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Abstract

In this work we explore theoretical and practical properties of high dimensional
distributions which arise from a decoupling of the sampling of the norm and the
direction into independent random variables. We provide the first characterization
of maximum entropy distributions in high dimensions with non-increasing norm
densities. We use these finding as a prior in the context of generative models, and
illustrate its advantages as data augmentation strategy.

1 Introduction

Modern machine learning methods rely heavily on probability distributions in very high dimensions:
Bayesian neural networks [3] establish priors on the weights, GANs [5] involve a choice of a noise
distribution, and VAEs [12] require parametric probabilistic encoders and decoders as well as a prior
on the latent space. Multivariate Gaussian random variables are the most common choice for these
distributions. This approach has several theoretical and practical justifications: these distributions
are numerically stable; have analytic expressions for information theory and other probability theory
quantities; are the maximum entropy continuous distribution with fixed variance; and play a crucial
role in the Central Limit Theorem.

However, multivariate distributions with independent and identically distributed components exhibit
a property in which most of the probability mass is concentrated away from the mean and around
a hypersphere. This is due to the way in which volume behaves in high dimensions. Huszár [8]
provides a nice overview of this behavior for high dimensional Gaussians, and points out that these
distributions in high dimensions resemble soap bubbles, contrary to widespread intuitions regarding
their behavior. This is an undesirable property in many tasks that require sampling, as it implies the
existence of a mismatch between the properties of the mean of the distribution and those observed in
samples. This effect is illustrated in Figure 1.

The maximum entropy property makes Gaussian distributions a good choice for priors over latent
variables without imposing additional structure. However, in many applications in machine learning,
we also introduce encoders for mapping data into the latent space, and the latent variables take the role
of codes. From the point of view of coding theory, it is reasonable to expect that codes which have
larger density should be sampled more frequently. This expectation is matched in the 1-dimensional
case, but does not hold in higher dimensions because of the soap bubble effect mentioned previously.
In short, we want to make sure that regions in code space in which we have prescribed a large
probability density also have large probability mass.
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The rest of this paper is structured as follows. In Section 2 we formally present our model along with
our theoretical contributions. Section 3 displays the results of our experiments and comparisons to
state-of-the-art methods. Finally, Sections 4 and 5 present a brief summary of related approaches and
the conclusions of our work, respectively. We provide proofs for our theorems in Appendix A, along
with details on our experimental settings.

The code for this project can be found at https://github.com/jgalle29/soap_bubbles.

Figure 1: Density of the norm of a D-dimensional
standard Gaussian. Taken from [2].
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Figure 2: r ∼ pr, s ∼ U(Sn−1 (1))
and p(x|r, s) = δrs(x).

Notation

We follow standard notations for scalars (e.g. r, n) and vectors (e.g. x, s). Sn−1 (r) represents the
(n− 1)-sphere embedded in Rn, i.e., Sn−1 (r) = {x ∈ Rn | ‖x‖ = r}. An−1 (r) denotes the surface
area of Sn−1 (r). For a compact d-dimensional manifold Ω on Rn, U(Ω) represents the uniform
distribution over Ω. Let A be a set and a ∈ A; δa denotes a Dirac distribution at a. Unless noted
otherwise, all norms refer to the `2 norm. Γ(·) and ψ(·) denote the gamma and digamma functions.

2 Theory

We propose to decouple the sampling process of a multidimensional point x into distributions over its
norm and direction, independent of each other. This decomposition allows us to ensure that the norm
of the samples follows the arbitrary univariate distribution pr on [0,∞).

r ∼ pr(r) s ∼ U(Sn−1 (1)) x = r · s (1)

Let us cast several common distributions in this framework in terms of the implicit assumption being
made on the distribution of the norm. First, a Dirac distribution at the origin in Rn corresponds to
a choice of pr to be a δ0 in R. More generally, a uniform distribution over Sn−1 (r̂) is induced by
pr = δr̂. Furthermore, a choice r ∼ χ(n) recovers the multivariate Gaussian distribution, which
suffers from the soap-bubbling effect for all n > 1. We highlight the fact that the cause for this lies
on the increasing behavior of pr around 0.

A closer look to the graphical model in Figure 2 reveals that, in general, the individual coordinates of
the vector x are not independent random variables. In Appendix A we show how the specific case of
r ∼ χ(n) of the Gaussian model preserves the independence of the coordinates as random variables.

2.1 Properties of the proposed model

Theorem 1. The density of a random variable x ∈ Rn following Equation 1 is given by:

p(x) =
pr(‖x‖)

An−1 (‖x‖)
(2)

Furthermore, E[x] = 0 and V[x] = E[r2]
n I.

We now provide an intuitive way to understand the content of the previous theorem. Consider the
distribution of the norms, pr. For each possible radius r, the model is taking the density pr(r) and
spreading it uniformly over the sphere Sn−1 (r). Note that this is implicitly penalizing vectors with
high norm since in those regions, the density provided by pr needs to be large in order to compensate
for the increase in the surface area of a sphere of a larger radius.
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Standard affine transformation can be applied to random variables following our decoupled parame-
terization in order to obtain distributions with arbitrary mean and covariance structure. For simplicity,
we concentrate our theoretical developments on isotropic distributions centered at the origin.
Theorem 2. The (differential) entropy of a random variable x ∈ Rn distributed according to the
graphical models displayed in Figure 2 is given by:

H[x] = H[r] + Er
[
log
(
An−1 (r)

)]
= H[r] + log

(
2π

n
2

Γ
(
n
2

))+ (n− 1)E[log(r)] (3)

Theorem 3. Let pr and qr be two distributions with support on R≥0. Let p(x) and q(x) be the
distributions on Rn induced by pr and qr, respectively.

KL(p(x) || q(x)) = KL(pr(r) || qr(r)). (4)

2.2 Maximum Entropy Distribution

As we have mentioned previously, the choice of a Gaussian distribution as the de facto default in
many machine learning applications leads to the apparently paradoxical soap-bubbling behavior. In
this section we explore the theoretical consequences that arise when one imposes the constraint of a
non-increasing density in the norm from a maximum entropy point of view. In other words, if we
require the distribution pr to have a non-increasing density, what is the class of such distributions pr
which minimize the amount of prior information built into the high-dimensional distribution p(x)?

To answer this question, we first make a brief detour and define the Generalized Gamma distribution
and present some of its properties:
Definition 1. The Generalized Gamma distribution with parameters α, β > 0, η 6= 0 is denoted by
Γ̃(α, β, η). It has support on R≥0. Its density function is given by:

p(r;α, β, η) =
|η|

Γ(α)βαη
rαη−1 exp

[
−
(
r

β

)η]
for r ∈ R≥0 (5)

Figure 3: PDF of a Generalized Gamma distribution
for several parameter configurations. Captions stand for
parameters (α, β, η).

Distribution Γ̃(α, β, η)

χ(n) (n2 ,
√

2, 2)

Γ(κ, θ) (κ, θ, 1)

|Gen-N|(0, β, η) ( 1
η , β, η)

(Γ(κ, θ))q (κ, θq, 1q )

Lévy(c) ( 1
2 ,

c
2 ,−1)

Table 1: Some distributions related to
the Generalized Gamma.

Figure 3 shows the behavior of the density of the Generalized Gamma distribution for several
configurations of the parameters. Along with Table 1 we see that we recover plenty of familiar
distributions as special cases. We highlight some relevant examples.

First, lines [b] and [c] in Figure 3 correspond to χ(10) distribution, which exemplifies the soap-
bubbling behavior mentioned earlier. Line [a] is a folded standard Gaussian distribution, i.e., the
distribution of the absolute value of a standard normal. Whenever the product αη = 1, we recover a
folded generalized Gaussian distribution, in which the density is proportional to exp (− (r/β)

η
).

Finally, line [e] shows that η = −1 and α = 1
2 induces a Lévy distribution. An important property

of the Lévy distribution (shared with the Gaussian and Cauchy distributions) is that it is stable: the
sum of two Lévy random variables follows again a Lévy distribution. This is particularly useful in
the context of interpolation in generative models, since we want to ensure that the distribution of the
codes used during the training of the generator (z, z′ ∼ p(z)) and that of points along interpolation
paths (θz + (1− θ)z′) enjoy similar properties.
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Lemma 1. Let r be a random variable following a Γ̃(α, β, η) distribution and let k ∈ N.

E[rk] =
βkΓ

(
α+ k

η

)
Γ(α)

, E[log(r)] = log(β)+
ψ(α)

η
, H[r] =

(
1

η
− α

)
ψ(α)+log

(
βΓ(α)

η

)
+α.

(6)
Theorem 4 (Main Result). The distribution pr(r) on the norms which induces maximum entropy on
the high-dimensional distribution p(x) subject to the constraints that pr is non-increasing and has a
fixed second moment, is given by a Generalized Gamma distribution.

We refer the interested reader to Appendix A for a proof of this result along with several insights on
the nature of this result. Remarkably, although an analytic solution to express the parameters of the
maximum entropy distribution seems elusive, our numerical experiments allow us to conjecture that
this corresponds to a folded Generalized Gaussian distribution on the norm.

One of the consequences of our proof is that the value of η∗ grows (approximately linearly) with the
dimension of the space, n. This is relevant since the density of a Γ̃( 1

η , β, η) distribution converges
point-wise to that of a U(0, β). Note that this is a uniform distribution over the norm, rather than a
uniform distribution over a ball (in x) of radius β. This implies that we draw samples heavily around
the origin and decrease polynomially fast (with degree 1− n) as we move away from the origin. This
behavior is shown by line [d] in Figure 3.

3 Experiments

We experimented with WGAN [1] with gradient penalty [6] with a Gaussian prior and our proposed
prior, i.e., a maximum-entropy Generalized Gamma norm distribution. We report our results on
MNIST [13] and cropped LFW faces [7, 16] datasets. Unless specified otherwise, ”our distribution"
refers to the maximum entropy distribution with non-increasing pr with identity covariance. In
other words, pr(‖x‖) = Γ̃(α, β, η) where η ≈ 3.27n, α = 1/η, β =

√
nΓ(α)/Γ(3α), and n is the

dimension of the latent space. The Gamma distance model proposed by Kilcher et al. [10] replaces η
by 2 and α by 1/2.

Figure 4: Samples generated by a WGAN trained using our proposed distribution on the latent space
for MNIST (left) and LFW (right).

Figure 4 shows samples drawn according to our proposed distribution in the latent space, generated by
a WGAN trained using the same distribution. The samples generated by latent codes away from zero
are qualitatively comparable to those generated by WGAN trained with a Gaussian prior. However,
Figure 5 shows that our model behaves better closer to the origin than models trained with a Gaussian
prior. This is not unexpected: the Gaussian prior rarely provides the generator with codes that have
low norm, and thus the generator network has not been trained in that region. Further experimental
details are provided in Appendix B.

Interestingly, we observe that there exists a gap in the lower bound of the Wasserstein distance
between the real data distribution and the generated distribution for models that are trained with a
Gaussian prior versus our model, shown in Figure 6. We hypothesize this is due to the fact that our
model places a large density our model, which comes from the normalization by the area of a sphere
of a very small radius. Therefore, we often sample noise vector close to zero, at which the model is
unable to generate samples with high quality since those are easily detected by the critic to be fake.

Another interesting application of our distribution is on data augmentation. Adding Gaussian noise to
high-dimensional data (e.g. images) induces samples located on a sphere at a certain radius away
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Figure 5: Interpolations through the origin for a WGAN trained with our proposal (top) and a
Gaussian distribution (bottom) on a 100-dimensional latent space. The horizontal scale is comparable
for both models.

0 100 200 300 400 500
Iteration (x1000)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

W
as

se
rs

te
in

 d
ist

an
ce

 lo
we

r b
ou

nd

Ours ( = 3.27n)
Gamma distance model ( = 2)
Gaussian

0 100 200 300 400 500
Iteration (x1000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
W

as
se

rs
te

in
 d

ist
an

ce
 lo

we
r b

ou
nd

Ours ( = 3.27n)
Gamma distance model ( = 2)
Gaussian

Figure 6: Lower bound on the Wasserstein distance estimated by the WGAN critic during training for
MNIST (left) and LFW (right).

from the original observation at the center. Note that, as a result of this, the original datapoint
will rarely be sampled. Figure 7 shows how using our distribution and the Gamma distance model
compares with noising using Gaussian distributions. Recall that in high dimensions, our maximum
entropy distribution converges point-wise to a uniform distribution over a certain ranges of norms.
This produces a “uniform degradation” of the image across samples, compared to that of a Gaussian
distribution, which adds perturbations of (roughly) constant magnitude.

Figure 7: Stochastic perturbation of image data using our maximum entropy distribution (left),
r2 ∼ Γ( 1

2 , θ) (center) (see Section 4) and isotropic Gaussian noise (right). All noise distributions
have mean zero and identical variance. The samples are sorted by the norm of the noise vector in
ascending order.
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Having the ability to sample close to the zero vector as well as farther away ensures that we obtain
both the image of interest as well as its noisy variations. Among other applications, such image data
augmentation can prove useful in regularizing classification models (which can make them more
robust to adversarial examples [17]) or training denoising autoencoders [19].

4 Related work

The idea of reparameterizing high-dimensional vectors into their magnitude and directional com-
ponents has been explored previously. [10] choose a family of distributions {Γ( 1

2 , θ)}θ>0 for the
distribution of r2. However, they do not perform a thorough analysis of the general reparametrization
for high-dimensional distributions. This turns our to be a folded Gaussian distribution or, in the
shape of a Generalized Gamma, Γ̃( 1

2 , θ, 2), which is a specific case of our maximum entropy model.
However, this specific configuration only provides maximum entropy in the case n = 1. The authors
call their resulting distribution the “Gamma distance model”, and perform experiments aiming to
provide more meaningful linear interpolations (through the origin) in the latent space.

[14] provide a similar analysis of the theory of interpolation in generative models using a Cauchy
distribution as the distribution of the norms. This is another example of a stable distribution, similar
to the Lévy distribution mentioned earlier. In contrast to the behavior of the Cauchy distribution, all
the moments of our maximum entropy distribution are finite. Note that the fact that the moments
of the Cauchy distribution are infinite, prevents it for being a potential candidate in our search for a
maximum entropy distribution since our constraint for the second moment assumes a fixed finite value.
It is an interesting future direction to explore whether the stability property of the Lévy distribution
provides similar benefits in practice as those of the Cauchy distribution.

[4] propose to drop Gaussians altogether and commit entirely to a spherical latent space. They
present a way to perform the reparameterization trick and find an expression for the Kullback-Leibler
divergence between von Mises-Fisher distributions in several dimensions. We note that the uniform
distribution over a sphere considered here is a special case of the family of functions we are examining,
where pr is a delta distribution at a given radius.

In the context of optimization, [15] show that such a decomposition for weights in deep networks
improves conditioning and leads to faster and more stable training using stochastic gradient descent.

5 Conclusions

We considered a simple method to represent isotropic distributions as a decomposition of a distri-
bution over norms and a distribution over directions. We further analyze popular distributions as a
decomposition of norm and direction, and present theoretical properties of such a decomposition. We
found the maximum entropy distribution with fixed variance and a non-increasing norm distribution
pr and learned that the norm is distributed according to a Generalized Gamma. The choice of
Generalized Gamma for the norm distribution also generalizes previous work [10].

Our future work involves further analysis of this decomposition in the non-isotropic case. For instance,
the proposed decoupling can be extended to distributions with arbitrary mean and covariance , which
can be obtained via standard affine transformations of random vectors. While some of our theoretical
properties apply trivially or with minor modifications, we found some other analyses to be more
challenging. For example, Theorem 3 does not hold when p and q have different means and
covariances, and a closed form solution has been elusive for a general norm distribution.
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A Proofs of things

Theorem 1. The density of a random variable x ∈ Rn following Equation (1) is given by:

p(x) =
pr(‖x‖)

An−1 (‖x‖)
(7)

Furthermore, E[x] = 0 and V[x] = E[r2]
n I.

Proof.

p(x) =

∫
R≥0

p(x|r) pr(r) dr =

∫
R≥0

pr(r)

An−1 (r)
δ‖x‖(r) dr =

pr(‖x‖)
An−1 (‖x‖)

, (8)

where the last equality follows from the property of the Dirac distribution as an evaluation functional:
δω[φ] = φ[ω].

The expectation of x vanishes since x 7→ x p(x) is an odd mapping. Finally, let s ∼ U(Sn−1 (r)). It
is easy to show that V[s] = 1

n I. Therefore,

V[x] = Er[V[x|r]] = Er[r2 V[s]] =
E[r2]

n
I. (9)

Theorem 2. The (differential) entropy of a random variable x ∈ Rn distributed according to
Equation (1) is given by:

H[x] = H[r] + E
[
log
(
An−1 (r)

)]
= H[r] + log

(
2π

n
2

Γ
(
n
2

))+ (n− 1)E[log r] (10)

Proof.

H[x] = −
∫
Rn
p(x) log p(x) dx (11a)

=

∫
r∈R≥0

∫
s∈Sn−1(r)

pr(r)

An−1 (r)
log

(
An−1 (r)

pr(r)

)
ds dr (11b)

=

∫
R≥0

pr(r) log

(
An−1 (r)

pr(r)

)
dr (11c)

= H[r] + E
[
log
(
An−1 (r)

)]
(11d)

= H[r] + log

(
2π

n
2

Γ
(
n
2

))+ (n− 1)E[log r] (11e)

Theorem 3. Let pr and qr be two distributions with support on R≥0. Let p(x) and q(x) be the
distributions on Rn induced by pr and qr, respectively.

KL(p(x) || q(x)) = KL(pr(r) || qr(r)). (12)
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Proof.

KL(p(x) || q(x)) =

∫
Rn
p(x) log

(
p(x)

q(x)

)
dx (13a)

=

∫
Rn

pr(‖x‖)
An−1 (‖x‖)

log

(
pr(‖x‖)

������
An−1 (‖x‖)

������
An−1 (‖x‖)
qr(‖x‖)

)
dx (13b)

=

∫
r∈R≥0

∫
s∈Sn−1(r)

pr(r)

An−1 (r)
log

(
pr(r)

qr(r)

)
ds dr (13c)

=

∫
r∈R≥0

pr(r) log

(
pr(r)

qr(r)

)
dr (13d)

= KL(pr(r) || qr(r)) (13e)

Lemma 2. Let r be a random variable following a Γ̃(α, β, η) distribution and let k ∈ N.

E[rk] =
βkΓ

(
α+ k

η

)
Γ(α)

, E[log(r)] = log(β) +
ψ(α)

η
, H[r] =

(
1

η
− α

)
ψ(α) + log

(
βΓ(α)

η

)
+ α.

(14)
Theorem 4 (Main Result). The distribution pr(r) on the norms which induces maximum entropy on
the high-dimensional distribution p(x) subject to the constraints that pr is non-increasing and has a
fixed second moment, is given by a Generalized Gamma distribution.

Proof. Let pr be an arbitrary distribution on R≥0. Consider the following functional Lagrangian:

J[pr] =

∫
R≥0

pr(r) log

(
rn−1

pr(r)

)
+λ0

(∫
R≥0

pr(r) d r − 1

)
+λ1

(∫
R≥0

r2pr(r) d r −A

)
(15)

Note that J[pr] represents the entropy of the corresponding distribution induced by pr on Rn, offset
by a constant log(An−1 (1)), along with Lagrange multipliers ensuring the proper normalization of
pr, as well as the constraint on the second moment. This latter constraint is related to the fact that
the variance of the induced distribution is E[r2]

n I. Thus, in order to obtain a distribution p(x) with
variance σ2I, we set E[r2] = A = nσ2.

If one extremizes this Lagrangian with respect to pr without further restrictions, one arrives at a
χ(n) distribution (multiplied by some adequate constant to satisfy the second moment constraint),
corresponding to the familiar result on the Gaussian law being the continuous distribution of maximum
entropy with a given variance. Algebraically,

δJ[pr]

δpr
= − log (pr)− 1 + log

(
rn−1

)
+ λ0 − λ1r2 = 0 (16a)

pr(r) = eλ0−1rn−1e−λ1r
2

∼ constant · χ(n) (16b)

The factor rn−1 induces an increasing behavior in pr around zero for all n > 1. This is precisely the
soap-bubbling effect we would like to avoid. In the case n = 1, this factor vanishes, and thus this
effect is not present in one dimension.

Taking a step back, we realize that the functional form of optima for J[pr] corresponds to that of a
Γ̃(α, β, η) distribution (whose parameters are yet to be determined). We use this parametric point of
view to enforce the non-increasing behavior and the constraint on the second moment of pr. Note
that the parametric treatment provides proper normalization automatically. We restate the density of
the Generalized Gamma distribution for convenience.

p(r;α, β, η) =
|η|

Γ(α)βαη
rαη−1 exp

[
−
(
r

β

)η]
for r ∈ R≥0 (17)
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We now enforce the non-increasing behavior in pr, by realizing that this is directly controlled by the
product αη. If we demand that αη ≤ 1, we obtain a density pr which is non-increasing in r. Note
how this is violated in the χ(n) distribution which corresponds to α = n

2 and η = 2; and how the
“magnitude” of the violation of this constraint increases with the dimension of the space.

In the following statements we use heavily the results obtained in Theorem 2 and Lemma 2 to satisfy
the constraint on the second moment and to calculate the resulting entropy.

E[r2] =
β2Γ

(
α+ 2

η

)
Γ(α)

= A ⇒ β =

√√√√ AΓ(α)

Γ
(
α+ 2

η

) (18)

Replacing the value of β in the expression for the entropy for a Generalized Gamma distribution, we
obtain:

H[x] = log

(
2π

n
2

Γ
(
n
2

))+ H[r] + (n− 1)E[log(r)] (19a)

= cst + α(1− ψ(α)) + n
ψ(α)

η
+
n

2
log

 AΓ(α)

Γ
(
α+ 2

η

)
+ log

(
Γ(α)

η

)
(19b)

, H(α, η;n,A) (19c)

Thus, we have reduced the problem of searching over all possible distributions with non-increasing
density to a two-dimensional constrained optimization problem (with two equivalent formulations).
We make explicit the dependence of the optimization problem at hand on the dimension of the space
n, and the constraint on the raw second moment A.

max
αη≤1

H(α, η;n,A) ≡ max
η>0, α≤ 1

η

H(α, η;n,A) (20)

Unfortunately, the nature of the functions involved in the optimization did not allow us to obtain
an analytic solution for what the optimal α∗ and η∗ are, as a function of n and A. However, we
performed numerical optimization jointly over α and η for several values of n and obtained several
interesting findings.

For all of the experiments we performed, the constraint αη ≤ 1 was active at the optimum. This
implies that our maximum entropy model corresponds to a specific sub-family among the Generalized
Gamma distribution: Γ̃

(
1
η∗ , β, η

∗
)

, where β is set according to Equation 18. This is precisely the
distribution of a folded Generalized Gaussian distribution.

In particular, the numerical optimization yields that for the case n = 1, η∗ = 2 (and thus, since we
have a tight constraint, α∗ = 1

2 ). This is equivalent to a folded Gaussian distribution of adequate
variance, consistent with the fact that 1-dimensional Gaussian distributions do not experience the
soap-bubbling behavior.

Even though the optimization problem in Eq. (20) can be solved efficiently, we found that the optimal
value for η∗ (with σ2 = 1, and thus A = n) follows a (surprisingly) linear behavior, illustrated in
Figure 8. We used this approximation in our applications.

Figure 8: Approximation for the optimal con-
figuration η∗ as a function of the dimension.

Figure 9: Differential entropy for several
distributions of the norm.
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Finally, Figure 9 shows the entropy of the high-dimensional distribution induced by several choices
of the distribution of the norms. We use the χ(n) distribution (which corresponds to a Gaussian
distribution in x) as an upper-bound on the possible entropy that can be obtained in n dimensions,

and compare to the
√

Γ
(
1
2 , θ
)

model employed by Kilcher et al. [10]. Our findings clearly perform
better (in terms of entropy) than current proposed solutions to the soap-bubbling phenomenon.

B WGAN experimental details

We used a WGAN-GP [1, 6] for our experiments. In practice, we noticed that the gradient penalty
converges early in the training, so the results reported are not affected by the gradient penalty except
the very early steps.

Unless specified otherwise, “our distribution" refers to the maximum entropy distribution with non-
increasing pr with identity covariance. In other words, pr(‖x‖) = Γ̃(α, β, η) where η ≈ 3.27n,
α = 1/η, β =

√
nΓ(α)/Γ(3α), and n is the dimension of the latent space. The Gamma distance

model proposed by Kilcher et al. [10] replaces η by 2 and α by 1/2.

Our input images are greyscale and resized to 32× 32, and the latent space has 100 dimensions. For
both the generator and the discriminator, we used the Adam optimizer [11] with learning rate 0.0001,
β1 = 0.5, β2 = 0.9. We updated the generator after every 5 discriminator training steps. We used a
batch size of 64 during training.

Both the discriminator and the generator consist of four convolutional layers. The discriminator uses
the leaky ReLU non-linearity with instance normalization [18], whereas the generator uses the ReLU
non-linearity with batch normalization [9].
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