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Abstract
Recent works in optimization have exhibited
the impact of variance reduction on accelerat-
ing the convergence of stochastic gradient meth-
ods. However, it is still an open research ques-
tion how to effectively apply variance reduction
techniques on deep learning problems. In this
work we propose to combine variance reduction
with neighborhood-based adaptive moment esti-
mation optimization algorithms. We achieve on-
par performance as state-of-the-art techniques on
convex and non-convex classification on MNIST,
while achieving better levels of variance reduc-
tion, with a memory overhead that scales effi-
ciently with the number of datapoints.

1. Introduction
Emprical risk minimization (ERM) problems play a
paramount role in modern machine learning. We are given
a dataset of examples D = {(xi, yi)}ni=1, and we aim to
minimize the function

f(w) =
1

n

n∑
i=1

fi(w)

fi(w) = l(w, (xi, yi)) + λΩ(w),

with respect to the model parameters w. Here Ω is a µ-
strongly convex regularizer and the loss function l is convex
and L-smooth.

First order optimization methods have been widely used
to solve this problem, since the estimation of higher or-
der derivatives can be both time and memory-consuming.
Among this class of algorithms, we can find stochastic gra-
dient methods (Robbins & Monro, 1951; Bottou & LeCun,
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Figure 1. Graphical representation of our proposed algorithm.
See Section 3 for details.

2004). These methods are highly used in the context of
deep learning, where we often have a large training data set
and where the loss is not necessarily convex.

Recent works (Roux et al., 2012; Defazio et al., 2014; Hof-
mann et al., 2015; Johnson & Zhang, 2013) have been able
to speed up stochastic gradient methods, obtaining linear
convergence rate for finite sum problems. These works im-
prove the convergence speed by reducing the variance of
the estimation of the gradient by means of corrections ap-
plied to the raw gradients.

Moreover, (Brock et al., 2018) noticed that increasing the
batch size in deep learning problems improved the obtained
results efficiently. They hypothesize that this is due to the
variance reduction introduced by the use of large batch size.
Paradoxically, (Defazio & Bottou, 2018) show that these al-
gorithms do not improve upon the performance of popular
algorithms for deep learning optimization like Adam and
AMSGrad (Kingma & Ba, 2015; Reddi et al., 2018) that
are based on adaptive moment estimation (AME).

Our contribution: We propose to combine variance re-
duction with algorithms based on adaptive moment esti-
mation by leveraging the structure of the data on the input
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space. We expect this to be beneficial in the deep learn-
ing setting since it allows us to obtain low-variance up-
dates (similar to the large-batch regime), without having
the computational overhead. Moreover, compared to other
variance reduction techniques, our approach can scale to
datasets with large numbers of datapoints since we do not
store control variates per datapoint.

Our work includes:

• Understanding and implementing two AME algo-
rithms: Adam and AMSGrad.

• Understanding and using Stochastic Variance Re-
duced Gradient (SVRG) (Johnson & Zhang, 2013) as
a baseline variance reduction based algorithm.

• Implementing our algorithm and conducting experi-
ments in the convex (logistic Regression) and non-
convex (multi-layer perception) settings.

• Analyzing the performance of our algorithm in com-
parison to AMSGrad and SVRG.

Our code is available at github.com/jgalle29/vrame.

2. Related work
The last decade has witnessed major achievements regard-
ing the improvement of the convergence rate of first-order
stochastic gradient-based methods. Two of the most fruitful
directions are variance reduction techniques and adaptive
methods based on estimates of the moments of the stochas-
tic gradient.

In the context of optimizing a finite sum objective, where
the sum is strongly convex, SAG (Roux et al., 2012)
achieves linear convergence rate. For non-strongly con-
vex problems, SAGA (Defazio et al., 2014) allows for a
linear convergence rate as well and . However, these incre-
mental gradient algorithms have big memory requirements
as they store the gradient estimates for each data points,
which is especially not practical in the deep learning set-
ting. In the same context, the adaptation of SDCA (Shalev-
Shwartz & Zhang, 2013) to deep learning is not practical
because it requires the storage of all dual variables. SVRG
(Johnson & Zhang, 2013) from the other side is memory-
friendly and enjoys the same fast convergence rate as those
of SAG. Nevertheless, recent works (Defazio & Bottou,
2018; Chavdarova et al., 2019) point out the ineffectiveness
of the naive application of SVRG and other variance reduc-
tion techniques in the context of non-convex optimization
problems, that characterize the training of deep learning
models.

A different line of research has to do with algorithms re-
lying on estimates of the moments of the stochastic gradi-

ents, which have proven to work well for the training of
deep networks tasks and are currently the community de-
fault in deep learning. We refer to this family of methods as
AMEs. Among these, two remarkable examples are Adam
(Kingma & Ba, 2015) and AMSGrad (Reddi et al., 2018).
These methods keep estimates for the first and second mo-
ments of the gradient in order to perform a coordinate-wise
tuning of the learning rate. (Chavdarova et al., 2019) re-
mark on the dilemma that arises when trying to combine
VR techniques with AMEs. Since VR performs corrections
on the estimates of the stochastic gradient so as to decrease
its variance, a naive combination of this can result in an ar-
bitrary growth in the step size, due to the division by small
estimates of the second moment of the gradient.

(Hofmann et al., 2015) provides a unified analysis tech-
nique for uniform memorization algorithms (UMA) which
encompass SAGA and SVRG. A generic UMA aims at
minimizing a finite sum objective and performs the follow-
ing updates:

w+ = w − γgi(w), gi(w) = f ′i(w)− ᾱi (1)

ᾱi = αi −
1

n

n∑
j=1

αj α+
j =

{
f ′j(w) if j ∈ J
αj else,

(2)

where J is an arbitrary subset of {1, ..., n}, which might
depend on j.

Within this framework, they introduce N -SAGA as a way
to share gradient information between similar datapoints
which trades off between computation time and exactness.
N -SAGA takes advantage of additional structure in the
form of neighborhoods for each datapoint Ni, which de-
termine which training points are considered similar to ex-
ample i. This is a proxy for comparing how similar the cor-
responding functions fi are under the assumption of a well
behaved loss l. N -SAGA corresponds to an approximate
UMA which replaces the memory αi with an approxima-
tion . However, thid approximation does not necessarily
contain the gradients f ′i(w̃) (for some past iterate w̃), but
rather the most recent gradient f ′j(w) for the latest sampled
point j such that i ∈ Nj .

3. Method
As mentioned previously, exploiting the finite sum struc-
ture of certain optimization problems allowed for the de-
velopment of algorithms based on stochastic gradients with
linear convergence rates. We propose to take one step fur-
ther and make use of extra structure present in ERM prob-
lems. Namely, we are trying to optimize a specific type of
finite sum: one in which all the terms are the same loss
function l(w, (x, y)) evaluated at different training data-
points {(xi, yi)}ni=1.

github.com/jgalle29/vrame
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Consider the variance of the stochastic gradient ∇f . If our
goal is to obtain an estimate of ∇f with low variance, a
sensible way to achieve this is by trying to get a sample of
functions fi which is as diverse as possible. Here is where
can take advantage of the fact that the fi functions share
their internal structure.

Let zi = (xi, yi). Assuming that the loss function l is suffi-
ciently well-behaved (for instance, having L-(locally) Lip-
schitz gradients for each w), we can compare the gradients
of the loss at different training instances:

d(∇wl(w, zi),∇wl(w, zj)) ≤ Ld(zi, zj) (3)

This inequality implies that, provided that two training
points are close enough, the gradient we observe at one
point is a decent approximation of the gradient at the other.

Formally, we make use of a collection of neighborhoods
N = {Nc}Cc=1 which partitions the training dataset. For
each of the neighborhoods, we define their population ratio
πc = |Nc|

n . Such a choice of ratios ensures that we have
unbiased gradient updates.

This neighborhood structure can be thought of as a hyper-
parameter in our method. In the experiments presented
below, we construct the neighborhoods based only on the
class labels. However, more challenging datasets (includ-
ing regression problems) might require the used of more
sophisticated techniques, like clustering algorithms.

Let us now explain in detail how our proposed algorithm
operates. These steps are summarized in Algorithm 1 and
illustrated in Figure 1.

Algorithm 1 Inner loop of the proposed algorithm

Sample community Nc ∼ π := ( |Nc′ |
n )c′∈[1:C]

Sample (xit , yit) uniformly within Nc

AMSGrad update on local mc and vc using f ′it(w)

αc ← mc
|mc|√
Vc

∆← f ′it(w)− (αc −
∑

c′ πc′αc′)
AMSGrad update on global m̃ and ṽ using ∆
w ← w − γ m̃√

ṽ

During training, at time t, we perform hierarchical sam-
pling: first sample a neighborhood Nc according to the ra-
tios π and then sample a batch of examples it uniformly,
with replacement, within the communityNc. We then com-
pute the gradient of the loss with respect to the sampled
minibatch, f ′it(wt), and perform a local-AME update1:

1We actually employ the same maximum vt book-keeping as
AMSgrad.

mc = β1mc + (1− β1)f ′it(wt) (4)

vc = β2vc + (1− β2)f ′it(wt)
2 (5)

αc = mc
|mc|√
vc

√
1− β̃t+1

2

1− β̃t+1
1

(6)

We made the choice of using local AMEs as a way to sta-
bilize the training and reduce the variance of the control
variates. This is achieved since the moving-average nature
of our local AME estimates is more robust to noise in the
choice of a datapoint in the community than the full refresh
update proposed by N -SAGA.

We then use the directions provided by each of the local
AME optimizers as control variates to apply a correction
on the minibatch estimate of the stochastic gradient:

∆ = f ′it(wt)−

(
αc −

∑
c′

πc′αc′

)
(7)

This corrected gradient is then passed to the global AME,
which uses it to update its estimates for the first and second
moments and then perform a model update:

m̃ = β̃1m̃+ (1− β̃1)∆ (8)

ṽ = β̃2ṽ + (1− β̃2)∆2 (9)

wt+1 = wt − γ
m̃√
ṽ

√
1− β̃t+1

2

1− β̃t+1
1

(10)

In contrast to N -SAGA, rather than having per-data point
memories which get fully updated once a neighbor is sam-
pled, we propose to use per-neighborhood memories which
are updated updated following an AME scheme. These per-
neighborhood statistics are then used as control variates to
perform variance reduction. This is closely related to the
idea of local SGD (see (Lin et al., 2018) for a recent ap-
plication). However, in our proposal we use the local esti-
mates of the gradient as control variates rather than apply-
ing them directly in the update of the iterates.

Note that when the number of communities C = 1, we re-
cover the behavior of an AME; while the SAGA algorithm
corresponds to setting C = n and the parameters of the lo-
cal and global AMEs to only keep the most recent gradient
and constant identity for the second moment estimates.

We highlight that the use of the additional neighborhood
structure (proposed by N -SAGA) allows us to interpo-
late between the behaviors of an AME and SAGA, while
keeping the application of VR feasible for DL settings, in
which the memory cost of standard SAGA is prohibitive.
This is because, in practice, the number of neighborhoods
grows considerably slower than the number of points in the
dataset.
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4. Experiments
Convergence speed

We conducted experiments on the MNIST dataset for the
digits classification problem to measure the performance of
our algorithm, compared to SVRG and AMSGrad, in both
the convex and non-convex settings using logistic regres-
sion and multi-layer perceptron (MLP) classifiers.

Figure 2. Convex setting: evolution of the training loss for logis-
tic regression on MNIST.

Figure 3. Non-convex setting: evolution of the training loss for
MNIST classification with a 1-layer MLP with 100 tanh units.

Figures 2 and 3 show the evolution of the training loss for
the three algorithms. We see that our method is marginally
better than AMSGrad and SVRG for both tasks, and the
loss has less fluctiations than AMSGrad. We remark that
although our method obtained better performance here, we
did not perform extensive experimentation on the parame-
ters of AMSGrad and SVRG with our implementations.

Evolution of moment estimates

Consider the updates proposed by Adam and AMSGrad.
As the value of the gradients goes to zero during training,
the estimates of the second moment need to converge to
zero faster than those of the second moment in order to
avoid having large effective learning rates, as mentioned
by (Chavdarova et al., 2018). We performed experiments
on both Adam and AMSGrad to observe the evolution of

mt, vt and αt during the training.

Figure 4. Evolution of the biased first (blue) and second (red) mo-
ment estimates using Adam (top) and AMSgrad (bottom) for a
given parameter for logistic regression on MNIST.

Figure 4 shows the behavior observed for Adam and AMS-
Grad. We see that the maximum book-keeping on the sec-
ond moment estimates occurs effectively in our implemen-
tation, and we use this book-keeping in both our local and
global AMEs in order to avoid exploiding step sized as a
consequence of variance reduction.

Variance reduction

In this section we examine whether our method effectively
reduces the variance of the updates compared to standard
AMEs. To evaluate the amount of variance reduction that
we obtain using a given algorithm, we sample a large batch
of examples at a given iteration and we calculate the the
mean and standard deviation of the updates that would have
been executed by the algorithm if it only had seen each one
of the elements of said minibatch.

Figure 5. Qualitative analysis of the first update of our algorithm.
Top: first-step control variates for classes 0 and 1. Bottom left:
first-step average control variate. Bottom right: global optimizer
first step.

At the beginning of training we perform a warm-start on
each of the local AMEs by computing a first update on their
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moving averages. The value of the steps for the control
variates of classes 0 and 1, as well as the average control
variate and effective first update are displayed in Figure 5.
Note that the clean gradient contained in each control vari-
ate comes from the separation into classes from the neigh-
borhood structure. Moreover, the average control-variate
shows a clean aggregation of the information coming from
all of the communities. We remark that the first step per-
formed by the global optimizer in our algorithm is equiva-
lent to that of Adam and AMSGrad (see Section 5 for more
details).

Figure 6. Standard deviation of updates around convergence for
Adam (top), AMSGrad (middle) and our method (bottom).

Figure 6 shows the standard deviation of the updates for
several methods close to convergence on the logistic regres-
sion task. We see that our method provides the a consid-
erably smaller variance in the updates than the other two
alternatives, indicating that our control variate technique
was effective. We note that AMSGrad has a better behav-
ior in terms of the variance of the updates compared to
Adam, which is another reason to prefer AMSGrad over
Adam, besides the theoretical arguments regarding its con-
vergence.

5. Discussion
In our algorithm, we suggest a local AME update which
is different from the standard update used by Adam and
AMSGrad by a factor of |mt|.

In fact, if one uses the standard AMSGrad update, we no-
tice that the norm of our first update is very large. This is
because we initialize v0 = 0 and m0 = 0, thus at the first

iteration, (after bias correction) we have:

m1 = (1− β1)f ′i1(w0) (11)

v1 = (1− β2)f ′i1(w0)2 (12)

α1 =
m̂1√
v̂1

=
f ′i1(w0)

|f ′i1(w0)|
= sign(f ′i1(w0)) (13)

The first step in Adam (and AMSGrad) only takes into ac-
count the sign of the components of the gradient without
keeping the value of the gradient. The gradient is generally
not sparse (even for the first step using logistic regression),
thus the norm of the first update is large which might result
in a sudden increase of the loss. Adam deals with this is-
sue by taking a very small initial step size. For next steps,
the value of the norm of the is generally more controlled
because mt and vt change in a way that the above simpli-
fication in equation 13 is no longer possible. However, our
algorithm adds the value of α1 to the average control vari-
ate
∑

c′ πc′αc′ and we keep having a large update norm,
even after the first iteration when using the same learning
rate as Adam.

To fix this issue, we use the new variant of the AMEs
update, which has been suggested by (Chavdarova et al.,
2019), in turn inspired by (Schaul et al., 2013). In con-
trast with (Chavdarova et al., 2019), we don’t use this so-
lution for the vanishing vt problem, since -as previously
mentioned in the experiments- it can be solved by using
AMSGrad instead of Adam. Instead, we use it to correct
the large first update in Adam and to make it coincide with
the gradient in the first step. This also means that one might
only use this alternative for the first update and continue the
training using the standard scheme.

Further experiments that we run to evaluate variance reduc-
tion showed that Adam and AMSGrad do actually reduce
the variance of their parameter updates during the training,
and that this variance reduction is correlated with the values
of β1 and β2. In fact, if we sample a batch of points and cal-
culate the standard deviation of the parameter update, the
contribution of their gradient to the direction update would
increase as the values of β1 and β2 decrease. In practice,
Adam and AMSGrad use high values of β1 and β2 (default
values are β1 = 0.9 and β2 = 0.999) and these values
would allow for some variance reduction. Our experiments
show that AMSGrad introduces more variance reduction
than Adam. They also show that our algorithm has the op-
posite behaviour and that the variance of the updates de-
creases as the values of β1 and β2 decrease. This can be
explained by the fact that f ′it(wt) and (αc −

∑
c′ πc′αc′)

are more correlated for small values of β1 and β2, thus al-
low for more variance reduction.

The purpose of our work was to have an algorithm that
achieves variance reduction. However, (Tishby & Za-
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slavsky, 2015) proposes a two phases in the training of deep
models using stochastic gradient methods: an initial drift
phase in which the gradient provides a clear training sig-
nal, and a diffusion stage which perform a sort of random
walk in parameter space and might be useful for general-
ization. We suspect that VR techniques might have a larger
impact if applied only to this second stage of training.

6. Conclusions
In this work, we combined variance reduction with
neighborhood-based adaptive moment estimation opti-
mization algorithms. We showed that our algorithm
achieves on-par performance as AMSGrad and SVRG in
both convex and non-convex classification on MNIST. We
achieve better levels of variance reduction compared to
both algorithms. The number of neighborhoods that we use
grows much slower than the number of data points, which
provides better scalability compared to N -Saga that lever-
ages the input data structure as well. Our work allowed
us to understand better the implicit variance reduction of
parameter update in both Adam and AMSGrad, and to no-
tice that AMSGrad achieves more variance reduction than
Adam. We were also exposed to the issue of the combina-
tion of variance reduction with Adam, and offered some un-
derstanding to the issue linked to the first update in Adam.
Future work would include experiments on datasets that
have more challenging structure and where the neighbor-
hood structure might play a larger role, as well as offer-
ing a better direction update formula, that would solve the
problems exposed in the previous section.
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