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Overview

How do we select between hypotheses that are entirely consistent
with any observations?

The marginal likelihood, which represents the probability of generating
our data from a prior, provides an answer that encodes Occam’s razor.

P 130) = [ p(DIW,20) pwide) dw
We fundamentally re-evaluate whether the log marginal likelihood (LML) is

the right metric for predicting the generalization of trained models and
hyper learning, and pursue a conditional marginal likelihood alternative.

The marginal likelihood encodes Occam’s razor
Occam’s Razor: “we should
accept the simplest explanation normalized probability density: the

that fits the data” [MacKay most constrained model covering
2003]. the dataset wins [MacKay 2003].
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The marginal likelihood is a

The marginal likelihood penalizes diffuse priors
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The LML can be decomposed as follows: logp(D | M) = Y, log p(D;|D.;, M)

The marginal likelihood heavily
penalizes models where the
posterior after observing data is
much more concentrated than
the prior, even if the posterior
generalizes well.
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The conditional marginal likelihood

We form a posterior over a subset of the data and use it as a prior to
compute LML for the rest of the data, resulting in the conditional log
marginal likelihood (CLML):
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e Equivalent to removing the early terms in the LML decomposition.
e Has not been used for hyper learning, approx. inference, or underfitting.

The marginal likelihood is NOT generalization

Density estimation example: x~N(u, 1), u~N(u, 02)
The marginal likelihood can have a strong preference between models
with identical predictive distributions, due to its sensitivity to the prior.
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(a) Marginal log-likelihood  (b) Test log-likelihood ~ (c) Predictive mean  (d) Predictive variance
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Therefore the marginal likelihood can easily
favour a model with a worse generalization
performance:

The marginal likelihood can overfit

The LML can favor a prior
around a severely overfit
maximum likelihood solution.  fux)~¥ (m(X),k(x,0)): k(x.x') = exp [7’.",nx -IF)

The LML can overfit by ignoring uncertainty

mX) = MLP
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The CLML is more aligned with generalization
M; LML: 538, CLML: 11.45
5 e Fourier model:
f(x,a,b) = ¥3_, a,sin(d - x) + b, cos(d * x)

e LML prefers degree-3 M, model that underfits
and heavily penalizes the degree-9 model

e LML assigns a high likelihood to M., a degree-9
model with a modified prior which makes
identical predictions to M.

e CLML correctly prefers M, to M.

Mo LML: 289, CLML: 133

Moc LML: 54.2, CLML: 13.4

The CLML for neural architecture search

e The LML is not always aligned with generalization.
e The CLML is aligned with generalization for all prior precisions!
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The marginal likelihood can underfit

Underfitting to avoid

Underfitting in the function space
supporting bad solutions.
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The CLML for large-scale hyperparameter learning

The CLML is more effective for deep kernel hyperparameter learning,
especially in the low data regime.
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