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Abstract

Although the field of causality has developed separately from machine learning,
it has proven in recent years to be a useful tool for addressing many fundamental
questions in machine learning, from robustness to distribution shift, explainability
to fairness. In this review, we discuss existing work in causal representation
learning and structure learning. First, we define a causal representation as one
which satisfies properties of causal variables and survey existing works to build
causal representations. We describe methods for building causal representations
which utilize data from multiple environments, as well as methods which only
assume access to samples from a single environment. We then describe approaches
for learning the structure of a causal graph. Finally, we provide closing thoughts
on potential future directions based on existing works.

1 Introduction and motivation

Causal representation learning has attracted increasing interest from the machine learning commu-
nity in recent years. By combining ideas in representation learning with causal inference, causal
representation learning offers the potential for representations which are robust and transferrable,
interpretable as cause-effect mechanisms, and sample-efficient [Schölkopf et al., 2021].

Machine learning models have achieved impressive success on a wide range of tasks. However, most
statistical machine learning methods rely on the assumption that training data and future test data are
independent and identically distributed (IID). When the IID assumption is violated (e.g. due to natural
distribution shift in the world), such methods can show a dramatic degradation in performance. In
contrast, predictions which take into account the underlying causal mechanism behind the observed
data have the potential to generalize to new settings. Below, we discuss particular instantiations of
this idea via a variety of methods which combine machine learning and causality towards building
models which generalize to settings beyond the training distribution.

2 Background

2.1 The goal of causal representation learning

Statistical models can be learned from unstructured data such as images and text but cannot predict
reliably under real-world data distribution shifts. In contrast, causal models can predict reliably
under data distribution shifts but are traditionally used in conjunction with structured (rather than
unstructured) data provided in the form of causal variables. Causal representation learning aims to
incorporate ideas from both representation learning and causal inference in order to learn models
from unstructured data which have desirable properties of causal models, such as robustness to data
distribution shifts.

2.2 From statistical to causal modeling

The notion of an intervention is a defining characteristic of causal modeling that differentiates it from
statistical modeling. Consider a pair of variables X and Y , where X causes Y , denoted X → Y .
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If we intervene on X , the resulting intervention distribution, P (Y | do(X = x)), is the population
distribution of Y if we fix everyone in the population’s X value to x. In contrast, the conditional
probability P (Y | X = x) is the distribution of Y in the subset of the population where X was x.
In general, P (Y | do(X = x)) does not equal P (Y | X = x), and using P (Y | X = x) naively to
represent P (Y | do(X = x)) can lead to problems [Schölkopf, 2019]. Incorporating causality into
our ML methods could potentially prevent us from conflating correlation with causation.

2.3 Branches of causal modeling

Causal modeling contains a pair of inverse problems: causal reasoning and causal discovery. In causal
reasoning, a causal model is given and used to compute various interventional and counterfactual
probabilities. In causal discovery, the structure of the causal graph is learned from a dataset of causal
variables. We can divide existing work in causal representation learning via these two branches:
causal (or causally-inspired) representation learning focuses primarily on causal reasoning in that the
goal is to compute quantities that are counterfactual in nature; and structure learning is akin to causal
discovery, as the goal is to learn a causal graph.

2.4 Structural causal models

In structural causal models (SCMs), we assume that the observables X1, . . . , Xn are random variables
that are associated with the vertices of a directed acyclic graph G. Each observable Xi is assigned as
follows: Xi := fi(PAi, Ui), i = 1, . . . , n, where fi is a deterministic function and U1, . . . , Un are
jointly independent stochastic variables. The graph G is a causal graph since the parents of Xi affect
its assignment directly. Using this framework, we can formalize interventions as modifications in a
subset of assignments, e.g. by changing Ui or fi. More importantly, this framework gives rise to a
causal or distangled factorization of the joint distribution as follows:

p(X1, . . . , Xn) =

n∏
i=1

p(Xi|PAi). (1)

This factorization is the only one that decomposes the joint distribution into factors that correspond to
the structural assignments defined by our SCM. From the other side, many entangled factorizations
are possible, e.g.,

p(X1, . . . , Xn) =

n∏
i=1

p(Xi|Xi+1, . . . , Xn). (2)

One of the main differences between the two factorizations is what we call the Independent Causal
Mechanisms (ICM) principle, which we will discuss in the next section.

2.5 Independent Causal Mechanisms

A crucial assumption in causal inference called the Independent Causal Mechanisms Principle can be
stated as follows: The causal generative process of a system’s variables is composed of autonomous
modules that do not inform or influence each other [Schölkopf et al., 2012, Peters et al., 2017,
Schölkopf, 2019].

Two consequences follow from this principle with respect to the causal factorization in Eq. (1):

• No flow of influence: intervening upon one mechanism p(Xi|PAi) does not change the
other mechanisms p(Xj |PAj), i ̸= j.

• No flow of information: knowing a mechanism p(Xi|PAi) does not give us information
about another mechanism p(Xj |PAj), i ̸= j.

Notice that the first consequence of the ICM principle does not necessarily apply to the entangled
factorization in Eq. (2). Consider for example the relationship between altitude A and temperature
T [Peters et al., 2017]. The joint distribution can be written as p(T,A) = p(T |A)p(A) or p(T,A) =
p(A|T )p(T ). Since p(T |A) describes the physical mechanisms that generate temperature from
altitude, it will not be influenced by a change in the distribution p(A) over altitudes. Therefore, the
first factorization is a causal factorization that obeys the two consequences of the ICM principle. We
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cannot say the same thing about the second entangled factorization, where p(A|T ) can be effected
by an intervention upon p(T ). As a concrete example, arbitrarily heating up a subset of cities will
change the conditional distribution p(A|T ). It is this robustness under intervention and the ability of
causal mechanisms to generalize across different datasets that motivates our next section on causation
as invariance.

2.6 Causation as invariance

Causation can also be seen through the lens of invariance, since the Independent Causal Mechanisms
principle specifies invariance under intervention. As described previously, the causal factorization
in Eq. (1) guarantees that intervening upon one mechanism p(Xi|PAi) leaves mechanisms p(Xj |PAj)
with i ̸= j invariant. This view of causality inspired many philosophical works [Skyrms, 1980,
Cartwright, 2003, Woodward, 2005, Cheng and Lu, 2017]. In machine learning, it particularly inspired
two lines of research: 1) invariant causal prediction and invariant risk minimization (section 3), and
2) learning causal graphs from interventions (section 4).

2.7 Structure of the paper

The paper is structured as follows: in section 3, we give an overview of recent works that aim to
achieve causal representation learning and eliminate dependence on spurious correlations, either by
harnessing access to multiple environments or knowledge of the graph. In section 4, we discuss
learning causal structures where we try to uncover the true parent-child relationship for a set of
variables. Finally, we offer closing thoughts in the conclusion. See Fig. 2 for a visual overview.

3 Learning causal representations

In this section, when we refer to a causal representation, we mean a representation that satisfies
properties we would expect causal variables to satisfy. For instance, we think of causal representations
as those whose relationship with the label is consistent, just as we expect causal relationships to stay
the same across time and geography even when other relationships do not. We refer to these other
relationships which do not persist as spurious correlations.

Consider the image classification task of classifying cows vs. penguins. While the relationship
between the animal shape and label will persist, the relationship between the background of the image
and the animal classification is not guaranteed to stay the same. For instance, in images from natural
habitats, cows appear more frequently in front of grassy backgrounds while penguins appear more
frequently in front of snow. In images taken in human-constructed environments (e.g. farms, zoos)
on the other hand, the relationship between the background and the animal label may be different.
We will use this running example throughout the section for illustration.

There have been many causally-inspired approaches to representation learning. We discuss each
below, dividing them between methods which do and do not assume access to multiple environments.

3.1 Learning Representations Using Multiple Environments

The link between causality and invariance was established by many works in the machine learning
field and has been used to avoid learning spurious correlations. As defined previously, a correlation
is called spurious when it is not maintained across different settings. Therefore, the goal is to
learn correlations that remain invariant across different training environments. In this section, we
consider the setting where we have multiple training environments e ∈ Etr that correspond to datasets
De = {(xe

i , y
e
i )}

ne
i=1 = (Xe, Y e). We additionally assume that these environments were generated

by unknown and not precisely controlled interventions.

Invariant causal prediction (ICP) Peters et al. [2016] exploit the link between causality and
invariance to find the direct causes of a target variable in the framework of structural causal models
described in section 2.4. Formally, for each subset of features Xe, we consider the linear model
Y e = µ+Xeγ∗+ ϵe, where µ is a constant intercept term, γ∗ denotes the coefficients corresponding
to Xe and ϵe ∼ Fϵ is the noise variable distributed identically for all environments. If this linear
model does not change across multiple training environments, then the corresponding subset of
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features gives raise to an invariant predictor, which makes them plausible causes of the target variable
Y . We iterate over subsets of features combinatorially and find multiple sets of plausible causes.
Finally, the true direct causes of the target variable Y correspond to the intersection of the sets of
plausible causes. Notice that for this method to work, there should be no unobserved counfounders
between the target variable and the features. Otherwise, the objective should be adjusted to take
these confounders into account. The authors prove that this method recovers the true set of causal
predictors when the data is Gaussian and satisfies a linear SCM under certain types of interventions,
namely do-interventions, noise interventions and simultaneous noise interventions (interventions that
change the noise for different variables at once).

Invariant risk minimization (IRM) One of the main drawbacks of ICP proposed by Peters et al.
[2016] is the difficulty of encoding the causal relationships between observed variables, or the
assumption that a meaningful causal graph relating them exists. For example what is the causal
relationship between individual pixels and a target prediction? Moreover, ICP only applies to linear
models and its complexity scales exponentially with the number of variables. Arjovsky et al. [2019]
depart from these observations to propose invariant risk minimization, a learning method that exploits
multiple environments to achieve invariance without attempting to directly learn the causal parents of
the target variables. Formally, a data representation Φ : X → H is said to elicit an invariant predictor
if there is a classified w : H → Y that is simultaneously optimal on all environments. This is a
bi-level constrained optimization problem, where we want to: i, find an optimal data representation
Φ, and ii, find the optimal induced classifier w across multiple training environments. The authors
propose a practical IRM formulation where they introduce a fixed dummy classifier and add a penalty
term that penalizes high gradients in each environment:

min
Φ:X→H

∑
eEtr

Re(Φ) + λ · ∥∇w|w=0.1R
e(w · Φ)∥2,

where Re is the risk under environment e. Intuitively speaking, the regularization term penalizes
solutions that can be improved with more training using the high gradient signal. The authors
prove that linear IRM, where both data representations and classifiers are linear, learns the target
invariance even when the three conditions needed for ICP’s theoretical results do not hold. However,
no theoretical guarantees for the non-linear case were provided due to the challenging bi-level nature
of the optimization problem.

Does invariant risk minimization really work? Rosenfeld et al. [2021] provide theoretical
evidence that if i, a function of invariant and spurious independent Gaussian factors is used to
generate the features, ii, the factors have linear correlations with the label, and iii, the dimensionality
of invariant features is greater than the number of domains, then the IRM framework would lead to
learning the spurious representations. Guo et al. [2021] show that deep neural networks can learn
non-overlapping spurious correlations across environments without hurting the IRM performance on
the training environment and thus perform poorly on the new test environment. They show that this is
particularly true when there is a strong triangle spuriousness, i.e., when there is a stronger correlation
among spurious features, the domain variable, and the class variable than invariant correlation among
invariant features and the class label.

Extending IRM to the nonlinear case Lu et al. [2021] extend the theoretical guarantees of IRM
to the case of nonlinear representations and nonlinear classifiers using a novel approach: invariant
Causal Representation Learning (iCaRL). More precisely, they consider a variational autoencoder
where Xe stands for the observed variables, Z for the latent variables, and Y e for the target variables
given environment e. Following Khemakhem et al. [2020], it is possible to obtain an identifiable
model, i.e., where two different choices of model parameters lead to the same model, by placing a
conditionally factorized prior distribution over the latent variables pθ(Z|U), where U is an additional
observed variable, e.g., target or environment label. Lu et al. [2021] use this result and place a
more flexible prior over the latent variables, namely general exponential family distributions. This
guarantees in theory that all the direct causes of the target can be fully discovered, which is done
in practice by observing that the dependency between two causes of Y , Zi and Zj , increases after
conditioning on Y , and testing this conditional dependency for all pairs. Finally, discovering the
direct causes of Y simplifies the IRM bi-level optimization problem to two simpler independent
optimization problems that can be performed separately to find the data representation and the optimal
classifier across different environments.
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(a) Anti-causal (b) Causal

Figure 1: Anti-causal vs. causal graphs. While CSR and NuRD assume an anti-causal relationship
(a), CR-PNS assumes a causal relationship (b, right). C-Inv considers both (a; b, left).

3.2 Learning Representations Using a Single Environment

Several recent papers describe methods for handling spurious correlations assuming only one envi-
ronment, the training data distribution. While methods such as IRM assume access to samples from
multiple environments, methods which assume access to only a single environment make alternative
assumptions to identify a suitable representation for generalization—for instance, knowledge of the
causal graph and the covariate that is spuriously correlated. We walk through each of the following
four methods below, highlighting the similarities and differences in their assumptions and proposed
methods:

• Causally-motivated Shortcut Removal (CSR) [Makar et al., 2021]

• Nuisance-randomized Distillation (NuRD) [Puli et al., 2021]

• Counterfactual Invariance (C-Inv) [Veitch et al., 2021]

• Causal Representation Learning via Probability of Sufficiency and Necessity (CR-PNS)
[Wang and Jordan, 2021]

First, we detail the data generating processes assumed in these works. Makar et al. [2021], Puli
et al. [2021], Veitch et al. [2021] assume that there exists a label Y , input X , and a variable Z
which is spuriously correlated with Y in the training distribution. Puli et al. [2021] call Z the
nuisance variable, terminology we will use in the remainder of the section. Using the running cows
vs. penguins example, X denotes the image, Y the animal label, and Z the background. Wang and
Jordan [2021] do not assume the existence of an additional variable Z but rather that deterministic
functions of X can be spuriously correlated with the label.

It is possible to consider both a causal and anticausal relationship between input X and label Y . Puli
et al. [2021], Makar et al. [2021] assume an anti-causal relationship—that is, Y causes X—while
Wang and Jordan [2021] assume a causal relationship. Veitch et al. [2021] consider both scenarios in
their approach. Puli et al. [2021], Makar et al. [2021] describe their setup in a non-causal interpretation
for the anticausal assumption using the notion of a family of distributions. In this family, the marginal
label distribution p(Y ) and the conditional input distribution p(X|Y,Z) remain the same across all
members, but the conditional distribution of Z given the label changes, i.e. pD(Z|Y ) ̸= pD′(Z|Y ).
See Fig.1 for a comparison of the structural causal graph assumptions of these methods. We highlight
additional assumptions in the exposition of the specific methods.

Next, the works propose different methods for building predictive models based on representation
learning. We first focus on the anti-causal scenario considered in Makar et al. [2021], Puli et al.
[2021], Veitch et al. [2021].

Assuming an anti-causal relationship. In CSR, Makar et al. [2021] assume that the label Y affects
X only through a sufficient statistic X∗ = f(X). In contrast, the theory in NuRD and C-Inv do
not make such an assumption and specifically consider that parts of X can be a function of both
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CSR NuRD C-Inv CR-PNS
anti-causal ✗ ✗ ✗
causal ✗ ✗
Z ✗ ✗ ✗
discrete Z ✗ ✗
suff. stat X∗ ✗

Table 1: Distinguishing single-environment methods by their assumptions.

Y and Z. Given this assumption in CSR, Makar et al. [2021] show that breaking the dependence
between label Y and nuisance Z in the training data via reweighting is sufficient to ensure that the
resulting Bayes optimal predictor is only a function of X∗—and thus also the optimal predictor
across all the distributions governed by the family of distributions described above. They additionally
include a marginal independence constraint under the reweighted distribution (which we call p⊥⊥) as
a regularizer: f(X) ⊥⊥p⊥⊥ Z. Even though it is not necessary to obtain the result above, they show
that this additional constraint helps with sample efficiency in learning. They actualize the regularizer
constraint via Maximum Mean Discrepancy (MMD).

Puli et al. [2021] also utilize reweighting as part of the solution in NuRD. However, as X can contain
mixed functions (i.e. using both Y and Z), Puli et al. [2021] introduce an additional constraint
which ensures that even after conditioning on the representation f(X), the label and nuisance remain
independent: Y ⊥⊥p⊥⊥ Z|f(X). They call such a representation f(X) an uncorrelating representation.
Puli et al. [2021] show that a representation within the uncorrelating set that is simultaneously optimal
(across the family) can be found, assuming existence, by maximizing mutual information with the
label. To avoid local maxima which complicate optimization, NuRD also incorporates the marginal
constraint f(X) ⊥⊥p⊥⊥ Z which combined with the uncorrelating constraint yields the following joint
independence constraint: (Y, f(X)) ⊥⊥p⊥⊥ Z.

In C-Inv, Veitch et al. [2021] design predictors which do not change under arbitrary changes to
Z. They do so by incorporating the constraint f(X) ⊥⊥ Z|Y via MMD. Puli et al. [2021] show
that this constraint also implies (Y, f(X)) ⊥⊥p⊥⊥ Z, which is more restrictive than the uncorrelating
assumption. Veitch et al. [2021] note that C-Inv will not produce predictors which are minimax
optimal across causally-relevant distributions in general, except in the case where the parts of X
which mix Y and Z do not contain useful information.

CSR and C-Inv both assume a discrete nuisance, while NuRD works with general nuisances, including
high-dimensional ones (e.g. patches of image pixels).

Assuming a causal relationship Under the assumed causal graph, Veitch et al. [2021] note that a
representation which is independent of Z will be counterfactually invariant: f(X) ⊥⊥ Z. The same
implementation ideas and theoretical results noted in the anti-causal setting also apply here.

Wang and Jordan [2021] define a causally-inspired objective to optimize directly when learning a
representation. Like in Veitch et al. [2021], they define a counterfactual property or properties they
desire in a causal feature. In particular, they describe probability of sufficiency and necessity: turning
on a feature counterfactually (i.e. setting it to a value when it is not that value) should likely turn
on the label given that it is not on, while turning off a feature should turn off the label given it is on.
They provide a single metric which jointly optimizes probability of sufficiency and necessity and
describe the assumptions needed to enable identifiability of the relevant interventional quantities from
observational data. They then optimize a lower bound of this objective to build causal representation.
They do not directly consider theoretical optimality guarantees of predictive models built on such
representations.

4 Learning causal structures

The goal of causal representation learning is to learn from unstructured observational data a latent
representation that satisfies properties of a causal variables. In this section, we discuss causal
structure learning, the setting where the causal variables are given to us, and our goal is to learn
their parent-child relationships. There are two main difficulties with this. The first is that DAG
structure learning is a difficult constrained combinatorial optimization problem, since the number

6



of possible graphs scales super-exponentially with the number of variables, and the graphs must be
acyclic. The second is that the ground-truth graph is unidentifiable from purely observational data
without further assumptions, since many factorizations of the joint distribution are consistent with
the same observational distribution. Unidentifiability is due to the fact that there are multiple causal
explanations which can explain observational data equally well, which is problematic.

We examine a recent line of work which turns the combinatorial optimization problem into a continu-
ous one [Zheng et al., 2018], eliminating the need for specialized algorithms. Others then followed up
to incorporate the idea of interventions in order to alleviate the issue of unidentifiability [Brouillard
et al., 2020, Ke et al., 2019, Scherrer et al., 2021]. With interventional data, the ground-truth DAG is
identifiable up to a smaller equivalence class given purely observational data.

Zheng et al. [2018] DAGs with NO TEARS: Continuous Optimization for Structure Learning

The main contribution of this paper is to introduce a smooth and differentiable function h : Rd×d → R
such that a graph with adjacency matrix W ∈ Rd×d is acyclic if and only if h(W ) = 0. The function
is given by

h(W ) = tr(exp(W ⊙W )), (3)

where ⊙ is the Hadamard product. Note that trBk is the number of length-k closed walks in a
directed graph with adjacency matrix B ∈ {0, 1}d. Therefore, an acyclic graph will have trBk for
all k ≥ 1. Guided by this insight, the authors arrive at Eq. (3) by also considering numerical stability.

Ke et al. [2019] Learning Neural Causal Models from Unknown Interventions

While Zheng et al. [2018] opened the door for continuous optimization in structure learning, it only
utilized purely observational data. This is problematic, as the graph is only identifiable up to a
Markov equivalence class. The authors of Ke et al. [2019] address this by extending Zheng et al.
[2018] to allow for interventional data. There are two sets of parameters: θ encodes the conditional
distributions P (Xi | PAi), while γ parameterizes the adjacency matrix, where σ(γi,j) represents the
probability that node Xj is a parent of Xi. Their method follows a three-stage procedure. In the first
stage, θ is optimized to maximize the log-likelihood of the observational data under the model. In
the second stage, data is sampled from the SCM, and one of the variables Xi is intervened on by
changing P (Xi | PAi). Then, the log-likelihood of the sampled data is maximized after omitting the
logP (Xi | PAi) corresponding to the intervened variable. This evaluation instantiates the idea of the
principle of independent mechanisms, since we wish to learn P (Xj | PAj)’s which are invariant to
changes in P (Xi | PAi), where i ̸= j. In the third and final stage, γ is updated w.r.t. the omitted-data
log-likelihood using a gradient estimator.

Brouillard et al. [2020] Differentiable Causal Discovery from Interventional Data

Brouillard et al. [2020] is another extension of Zheng et al. [2018] to include interventional data.
In contrast to Ke et al. [2019], Brouillard et al. [2020] assume continuous data and is theoretically-
grounded. Their theoretical results state that their optimization objective yields the ground-truth
DAG up to an I-Markov equivalence [Yang et al., 2018], which is more restrictive than Markov
equivalence.

Their method maximizes the log-likelihood of interventional data in a way that encourages the
P (Xi | PAi)’s to be invariant to one another. The authors instantiate the principle of independent
mechanisms albeit in a different way than Ke et al. [2019]. The method encodes the interventional
family with a binary matrix R ∈ {0, 1}K×d. The k’th row of this matrix is a d-dimensional mask
which specifies the variables to be targeted in the k’th intervention. The joint density for the k’th
intervention is given by

f (k)(x;M,R, ϕ) :=

d∏
j=1

f(xj ;NN(Mj ⊙ x;ϕ
(1)
j ))1−Rk,jf(xj ;NN(Mj ⊙ x;ϕ

(k)
j ))Rk,j . (4)

This expression evaluates to the first term in the product if the j’th node is not being intervened on in
the k’th intervention, and the second term otherwise. Mj is a binary mask which selects the parents
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of the j’th node, and NN(PAj ;ϕ
(k)
j ) returns the parameters of P (Xj | PAj). The optimization

objective is to maximize this joint density over all k = 1, . . . ,K interventions, or

S(G) := sup
ϕ

K∑
k=1

EX∼p(k) [log f (k)(X;M,R, ϕ)]− λ|G|. (5)

This objective encourages P (Xi | PAi) to be invariant across interventions that do not target Xi,
which is the principle of independent mechanisms.

Connection to IRM [Arjovsky et al., 2019] In the original formulation, we are given data from
multiple intervention distributions {p(k)}Kk=1, and we also know the ground-truth intervention targets
Rk,j for all k, j. The authors also propose a way to learn the intervention targets in the event
that the ground-truth assignments are unknown. They accomplish this in a relatively simple way,
by adding a regularizer to the loss to favor sparse interventions. The setting of Brouillard et al.
[2020], where the data comes grouped from multiple intervention distributions, but the identities
of the intervened variables is unknown, mirrors that of IRM [Arjovsky et al., 2019]. The different
intervention distributions are akin to environments, whose labels are known. In IRM, we know
that the data comes from different environments, but we do not know what causal variables were
intervened on in order to create the different environments.

Scherrer et al. [2021] Learning Neural Causal Models from Active Interventions

In Ke et al. [2019], the optimization objective for learning the causal graph is obtained by randomly
sampling a set of intervention targets on each iteration. Similarly, in Brouillard et al. [2020],
the optimization objective involves summing over all possible intervention sets k = 1, . . . ,K.
The authors of Scherrer et al. [2021] realized that this is inefficient, and proposed a more sample
efficient way of selecting interventions. Instead of selecting them randomly or evaluating all possible
combinations, they propose selecting a subset of intervention targets which maximizes the variation
between data sampled from a set of graph configurations following a given intervention. In order to
compute the discrepancy score for a given intervention, they first sample a set of causal graphs that
are consistent with the intervention. Then, the score for the k’th intervention target is defined as

Dk :=

∑
i(µ

k
i − µk)2∑

i

∑
j(S

k,i
j − µk

i )
2
, (6)

where i is the index of the causal graph, j is the index of the data sample. µk
i is the mean of the

data sampled from graph i, µk is the mean of the µk
i ’s across all graphs, and Sk,i

j is the j’th sample
from the i’th graph. In other words, this score is the ratio between the variance between groups, and
the variance within each group. This score is used to find the intervention targets that provide the
strongest signal for finding the correct graph structure.

5 Conclusion

This review surveys existing work in causal representation and structure learning. We note that
work in causal representation learning mirrors causal reasoning in traditional causal inference, while
structure learning is related to the problem of causal discovery. The works discussed in this review
generally fall under the umbrella of incorporating causality into machine learning [Schölkopf, 2019].

There are many future directions in this space. First, just as causal inference relies on a careful
specification of assumptions, future work on causal representation learning could consider alternative
assumptions. Such assumptions include other causal graphs, access to various sources of knowl-
edge/information, or further assumptions on the relationship between environments. Additionally,
various machine learning-specific advances could also help in this space; concretely, the theory
behind most of these works assumes the exact distributions of interest, which means that better
modeling could help bring the empirical results closer to their analytical counterparts. Finally, for
causal structure learning, additional constraints or information to enable sample-efficient learning
could yield benefit.
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A Appendix

Causal reasoning: Given a causal model,
compute various quantities such as the direct
effect of the drug on recovery.


Gender

Drug Recovery

Causal discovery: Learn the causal graph
with specialized optimization algorithms.


Gender

Drug Recovery

? ?

?

Traditional causal inference: data
is in the form of causal variables.

Causal representation learning: data is unstructured e.g. images, and we
must learn the causal variables.

? ?

Representation learning with causal inductive biases


(4) Structure learning: Learn the causal
graph with general continuous optimization
algorithms.


? ?

?

(3.2) Single environment, known
spurious correlations


(3.1) Multiple environments,
unknown spurious correlations


? ?

Figure 2: This figure summarizes the difference between traditional causal inference (left) and causal
representation learning (right). In traditional causal inference, data is given to us in the form of
causal variables, such as gender, drug, and recovery. Two main activities in causal inference are
causal reasoning and causal discovery. In causal reasoning, a causal model is provided, and we
use it to compute various interventional and counterfactual probabilities. In causal discovery, the
causal relationships between the variables is not known, and the goal is the learn the structure of
the causal graph. Meanwhile, in causal representation learning, the data is in an unstructured form,
such as images and raw text. In representation learning with causal inductive biases, the goal is to
learn a latent representation of the data that satisfy properties of causal variables. One example of
this is robustness to spurious correlations. In Section 3.2, we discuss methods where the data is
assumed to come from a single environment, and we may or may not know the identify of the spurious
correlations. In Section 3.1, the data is assumed to come from multiple environments, whose labels
are known. The objective is then to learn a predictor that is invariant to changes in the environment.
Finally, Section 4, the objective is to learn causal structures with continuous optimization algorithms
that can potentially scale to a large number of causal variables.
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