
Understanding the Generalization of Deep Neural
Networks through PAC-Bayes bounds: A Survey

Andres Potapczynski, Sanae Lotfi, Anthony Chen, Chris Ick ∗

Center for Data Science
New York University
New York, NY 11238

Abstract

Guaranteeing that neural networks generalize to unseen data is of foremost impor-
tance to their success in practical applications. However, achieving these guaran-
tees is a difficult task as many of the generalization bounds used for deep neural
networks depend on the dimensionality of the parameters space, making them
vacuous. In general, bounds that only rely on the number of parameters and/or
uniformly consider equally all representable functions of a given neural network
architecture do not result in practical complexity measurements for generaliza-
tion. A framework that can concentrate on certain function representations is
PAC-Bayes. In this survey, we analyze current progress and techniques that em-
ploy PAC-Bayes to yield nonvacuous generalization bounds for neural networks
as well as some of the recent advancements that enable bounds for heavy-tailed or
time-dependent distributions.

1 Introduction

Learning with deep neural networks has enjoyed huge empirical success in recent years across a wide
variety of tasks. Despite being a complex, non-convex optimization problem, simple methods such
as stochastic gradient descent (SGD) are able to recover good solutions that minimize the training
error. More surprisingly, the networks learned this way exhibit good generalization behavior, even
when the number of parameters is significantly larger than the amount of training data. In such an
over-parametrized setting, the objective has multiple optima that minimize the training error, but
many of those solutions do not generalize well. Hence, just minimizing the training error is not
sufficient for learning: picking the wrong minima can lead to bad generalization behavior. In such
situations, generalization depends implicitly on the algorithm used to minimize the training error.
Different algorithmic choices for optimization such as the initialization, update rules, learning rate,
and stopping condition, will lead to different global minima with different generalization behavior.

Metrics that rely on parameter counting are divorced on how the parameters of the model interact
with the fit to the data and how compressible the models can become. For example, Zhou et al.
(2019) show how flexible neural networks architectures can fit random labels, but then it is not
possible to quantize and prune its weights without losing accuracy. This in contrast to models
trained on actual data, which are substantially compressible (over 90% of the weights can be pruned
without a significant loss in accuracy). This suggests that by itself, the number of parameters will not
indicate which models will generalize better nor will it explain why certain solutions found during
optimization lead to better generalization.

As an alternative to parameter counting metrics, we survey the PAC-Bayes framework. This survey
is structured as follows: first, we revisit the classical PAC-Bayes formulations in order to understand
their limitations. We discuss the bounds in McAllester (1999), Shawe-Taylor and Williamson (1997)

∗Author order by order of contribution in report



and we also explore the improvements on these initial bounds for classification problems made by
Langford and Seeger (2001). We conclude this section with the more general bounds developed by
Catoni (2007).

Next, we survey how the generalization of neural networks has been studied through the lens of
PAC-Bayes and explain the techniques developed to yield nonvacuous bounds. We motive this sec-
tion by the empirical analysis of neural network generalization done by ? and contrast it with the
explanations provided by Neyshabur et al. (2017a) that depend on a combination of ideas including
PAC-Bayes and loss-landscape flatness. We then study the optimization ideas of Dziugaite and Roy
(2017) where they propose a loss objective that uses a differential PAC-Bayes bound as a compo-
nent; resulting in the first nonvacous bounds for neural networks. We finalize this section with an
exposition on the prunining and quantization techniques developed in Zhou et al. (2019). These
last compression techniques resulted in nonvacuous bounds for neural networks on ImageNet (Deng
et al., 2009) and also created, for the first time, a connection between compression and generaliza-
tion.

To conclude our survey, we explore relevant recent developments such as PAC-Bayes derived ob-
jectives for training probabilistic neural nets (Pérez-Ortiz et al., 2021), avoiding randomised predic-
tors through the use of margins (Biggs and Guedj, 2022), using informative priors (Letarte et al.,
2019), and extending them to graph neural networks (Liao et al., 2021). Additionally, we study the
computational aspects of PAC learning highlighting recent polynomial-time provable algorithms for
learning simple families of neural networks as in Diakonikolas et al. (2020), and highlight some
additional studies on PAC learning in simple neural nets in Vempala and Wilmes (2018) and Goel
and Klivans (2018).

2 Background

In this section we motivate the PAC-Bayes framework and discuss the different bounds that have
been derived in the literature. Assume we have a loss function ℓ : Y ×Y → R+, a parametric model
fθ : X → Y (most likely a neural network) where θ ∈ Θ (and Θ is the parameter space of all the
weights and biases of the neural network) and, finally, data D generated from the distribution PD
which we do not have direct access to. We would like to understand how our model will generalize
to unseen data, in other words, we would like to understand the behaviour of

R (fθ) = E
(X,Y )∼PD

[ℓ (fθ (X) , Y )] .

To pursue a mathematical analysis of R (fθ) we usually assume that either ℓ is bounded (as in the
case of classification) or that the random variable ℓ (fθ (X) , Y ) is sub-Gaussian or sub-exponential
with parameter σ2 (this last assumption is what we will use in this section).

Given these assumptions, a natural approach that is common practice is to derive a Probably Ap-
proximately Correct (PAC) bound on R (fθ) which would guarantee that its value will be bounded
by the empirical risk R̂ (fθ) = 1

N

∑N
i=1 ℓ (fθ (xi) , yi) with a high probability. This PAC bound

usually takes the following form, for a given confidence value δ ∈ (0, 1)

P

R (fθ̂) ≤ R̂
(
fθ̂
)
+ σ2

√√√√ log
(

1
δ

)
+ log |Θ|

N

 ≥ 1− δ (1)

where |Θ| denotes some measure on the space of parameters like VC-dimension or parameter count-
ing and θ̂ is selected via an algorithm A which takes as input data D and output a choice θ̂. Eq (1)
exemplifies the limitation of the PAC framework to neural networks as |Θ| is usually very large.

In the previous result, the value of |Θ| comes assuming that the bound should hold uniformly for
Θ. Through this lens, the PAC-Bayes framework then considers if we can achieve tighter bounds by
not considering the parameter space uniformly but rather by measuring it differently, through a prior
and posterior distribution on Θ.

Before jumping into some specific forms of the PAC-Bayes bounds it is worth reflecting on a key
lemma used to derive the bounds: the Donsker-Varadhan lemma.
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Lemma 1 (Donsker-Varadhan). For any measurable, bounded function h : Θ → R we have:

log E
θ∼P

[
eh(θ)

]
= sup

Q∈P(Θ)

[
E

θ∼Q
[h (θ)]−KL (Q,P )

]
where P (Θ) denotes the space of distributions over Θ. Moreover, the supremum is reached for the
Gibbs measure defined by

Q⋆ (θ) =
eh(θ)∫

eh(τ)P (τ) dτ
.

This lemma is crucial to understand the following PAC-Bayes bounds for two reasons. First, it allows
us to change the base measure given by the prior P to the posterior Q by adding a divergence between
the two measures exemplified in the KL (Q,P ) term. This is vital as our prior measure cannot be
informed by the data D and thus we obtain the flexibility of choosing another measure. Second, it
guides us in choosing the best posterior Q which is proportional to eh(θ). In our generalization study
h (θ) = R̂ (fθ) thus, the Gibbs posterior chooses where to concentrate its mass given the distribution
of the empirical risk under the prior.

First PAC-Bounds The first PAC-Bayes bound appears in the work of McAllester (1999) which
was inspired by some results in Shawe-Taylor and Williamson (1997). The original paper focused
on countable Θ. The first bound states that for any Q ∈ P (Θ) and δ ∈ (0, 1)

E
θ∼Q

[R (fθ)] ≤ E
θ∼Q

[
R̂ (fθ)

]
+

√
KL (Q,P ) + log 1

δ + 5
2 logN + 8

2N − 1
. (2)

Is this bound meaningfully different from the previous PAC bound that we exposed in the beginning
of the section? The answer severely depends on the choice of Q and P . For example, assuming Θ

is finite, if we let Q = I
[
θ = θ̂

]
, where θ̂ is the empirical risk minimizer, and P (θ) = 1

|Θ| , that is,
uniform on Θ then we have that

KL (Q,P ) = log

(
Q(θ̂)

1/ |Θ|

)
Q(θ̂) = log |Θ|

and we recover the same bound as eq. (1) (up to some constant terms). This last case also highlights
why the PAC bound is not tight, there is minimal overlap of Q and of P : they only overlap on a
single point θ̂. Yet, even if the posterior and prior have good overlap on Θ, we can still get a vacuous
bound. To illustrate this point, image that Q = N (θ̂, diag(σ2)I), where θ̂ is a minimizer found
during optimization and P = N (0, I). Then

KL (Q,P ) =
1

2

K∑
i=1

(
σ2
i + θ̂2i − 1− log σ2

i

)
and so if all the parameters of the neural network found during optimization θ̂i ̸= 0 then the
KL (Q,P ) would be some form of parameter counting (as there would be K summands, where,
in this case, K is the number of parameters in the neural network). Thus the difficulty of achieving
“tight bounds” is passed onto KL (Q,P ). In the next section we explore how to actually choose Q
and P in order to make the PAC-Bounds as tight as possible.

Maurer’s Bound (an improvement on Seeger and Langford’s Bound) The following bound
if based on work by Langford and Seeger (2001) which then was refined by Maurer (2004). This
bound focuses on classification losses, that is, ℓ (fθ (x) , y) = I [fθ (x) ̸= y]. Define the following
function kl : [0, 1]× [0, 1] as

kl (q, p) = q log (q/p) + (1− q) log ((1− q) / (1− p))

which is simply the KL divergence between two Bernoulli random variables. Using, this function,
then the Maurer bound states that

kl
(

E
θ∼Q

[
R̂ (fθ)

]
, E
θ∼Q

[R (fθ)]

)
≤

KL (Q,P ) + log 1
δ + log

(
2
√
N
)

N
.

3



To gain some intuition, consider the common case where the neural network is achieving almost 0
training error. In this case the bound would become

E
θ∼Q

[R (fθ)] ≤ 1− exp

−
KL (Q,P ) + log 1

δ + log
(
2
√
N
)

N

 .

When compared to eq (2), we see that the amount of data N plays a higher role. Interestingly, a
relaxation of this bound was used in Dziugaite and Roy (2017) to compute the first non-vacuous
bounds for deep neural networks.

Catoni’s Bound The following bound was introduced by Catoni (2007) and it states that for a
fixed α > 1 and for a loss such that ℓ ∈ [0, 1] then

E
θ∼Q

[R (fθ)] ≤ inf
λ>1

Φ−1
λ/N

[
E

θ∼Q
[R̂ (fθ)] +

α

λ

[
KL (Q,P ) + log

1

δ
+ 2 log

(
log
(
α2λ

)
logα

)]]
(3)

and

Φ−1
γ (x) =

1− eγx

1− eγ
.

This bound is quite interesting in that it involves and optimization over the parameter λ which trade-
offs how much the bound should focus on the training errors or in the divergence term. This bound
was used in Zhou et al. (2019) to derive the first non-vacuous bounds on ImageNet.

Generalization Bound The next bound was introduced in Germain et al. (2009) and it generalizes
the Maurer and the Catoni bound. This bound is also valid only for losses such that take values on
[0, 1]. The bound states that for any convex function H : [0, 1]

2 → R we have that

H

(
E

θ∼Q
[R̂ (fθ)], E

θ∼Q
[R (fθ)]

)
≤ 1

N

[
KL (Q,P ) + log

1

δ
+ logE

D
E

θ∼P
[exp(NH(R̂fθ), Rfθ)))]

]
where if H (p, q) = KL (p, q) we recover the Maurer bound and if H (p, q) =
− log

(
1− p

(
1− e−C

))
−Cq we recover the Catoni bound. This bound raises the question then if

there is an optimal choice of H . However, it appears that no such H has been found, or worse, that
it exists.

Convexity Optimized Bound The next bound was introduced in Thiemann et al. (2017) and
appears to be both tight for low training errors and is convinient to optimize in practice. The bound
states that for any λ ∈ (0, 2)

E
θ∼Q

[R (fθ)] ≤
E

θ∼Q
[R̂ (fθ)]

1− λ/2
+

KL (Q,P ) + log 1
δ + log

(
2
√
N
)

Nλ (1− λ/2)
.

Notice that this is the first bound to achieve a 1/N convergence rate when the training error is almost
zero (setting λ = 1). This bound if both convex in the posterior distribution and also convex in the
trade-off between empirical performance and the divergence term. This bound has been recently
used in Farid and Majumdar (2021) to provide guarantees on meta-learning.

In this section we have introduced and exposed a myriad of the ever so tighter PAC-Bayes bounds
that have been developed since 1999. However, there is no single dominant bound as many of them
present a different trade-off between the training accuracy and the divergence term that is present on
the bound. Yet, as neural networks usually achieve low error rates, then bounds like the “convexity
optimized bound” become more attractive. Unfortunately, the development of better mathematical
machinery to tighten the bounds is one fragment of the story, as the bound depend on the divergence
term KL (Q,P ) which could be arbitrarily large for deep neural networks. In the next section we
explore how researchers have been able to control for the size of the divergence achieving non-
vacuous bounds for deep neural networks.
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3 Non-vacuous PAC-Bayes Bounds

The naive application of traditional PAC-Bayesian bounds in the context of deep learning results in
vacuous bounds, i.e., bounds that do not provide new information on generalization. For instance an
error bound that is larger than 100% or even equal to 50% for a dataset like MNIST (Deng, 2012)
is not informative because we know that the test error will be lower than these values. Hence the
importance of obtaining tighter bounds to take advantage of the PAC-Bayesian framework in deep
learning.

Dziugaite and Roy (2017) obtained the first non-vacuous generalization bounds for deep stochastic
neural networks on the MNIST dataset. The authors use the PAC-Bayes bound from McAllester
(1999) and optimize this bound to find a posterior distribution that covers a large volume of low-loss
solutions around a local minima obtained using SGD. Their approach extends the work of Langford
and Caruana (2001) and Langford (2002) who construct the posterior distribution by perturbing the
parameters after training in order to find the largest deviation in each direction that does not increase
the training error by more than a certain threshold. This sensitivity analysis is however not applicable
to overparameterized neural networks since perturbations in individual parameters has little effect
on the training error. In contrast, Dziugaite and Roy (2017) constrain the posterior distribution to be
Gaussian which allows them to minimize directly the PAC-Bayes bound using the gradient signal
to update the network’s parameters and variances. The authors also use a data-dependent Gaussian
prior, which is allowed in theory as long as a union bound argument – where the prior over the
variance is taken into account – is applied to correct the bound. The authors obtain bounds between
16% and 22% on binary class variant of MNIST, which are non-vacuous but can still be improved
upon.

Zhou et al. (2019) rely on the observation that trained neural networks can be compressed to
smaller representations without significant loss in the performance to propose non-vacuous PAC-
Bayes bounds on the MNIST and ImageNet datasets. They use sparsity-inducing compression
schemes (Cheng et al., 2018) to compress the number of bits used to encode the model. Addi-
tionally, Zhou et al. (2019) use the well-known idea that deep neural networks are robust to small
perturbations (Hinton and Van Camp, 1993; Hochreiter and Schmidhuber, 1997; Langford and Caru-
ana, 2001; Langford, 2002; Keskar et al., 2016; Neyshabur et al., 2017b; Chaudhari et al., 2019). To
leverage this observation, they consider a stochastic network similarly to Dziugaite and Roy (2017)
and place a Gaussian posterior distribution over the network’s parameters. Finally, they evaluate
Catoni’s PAC-Bayes bound (Catoni, 2007) in equation 3 using the compressed network, a Gaussian
posterior and a mixture prior over all possible decoded points of the compression algorithm. They
achieve non-vacuous bounds on the MNIST dataset, with a bound that is lower 46%, and on the
ImageNet dataset, with a bound that is lower than 96.5%. Although these bounds are non-vacuous
in the sense that they are not larger than 100%, they are still non-informative about generalization
as the test error for both datasets is expected to be much lower than these error bounds.

Dziugaite et al. (2020) show that for linear PAC-Bayes bounds, i.e., bounds that depend linearly
on the KL divergence term between the prior and posterior distributions as in McAllester (2013),
choosing the prior to be equal to the posterior distribution can be suboptimal. They demonstrate that
a tighter PAC-Bayes bound can be obtained by choosing the prior distribution to be data-dependent.
More precisely, the authors prove that choosing the prior distribution to be the conditional expecta-
tion of the posterior given a subset of the training data can yield dramatically tighter bounds in some
cases. The authors propose a practical approximation of the data-dependent prior by optimizing over
a family of Gaussian distributions using a subset of the training data that is then completely discarded
and not used in the evaluation of the bound. They then evaluate the bounds for SGD-trained net-
works and show that they obtain tight bounds on the MNIST and Fashion MNIST (FMNIST) (Xiao
et al., 2017) datasets using data-dependent priors. Their experimental results also demonstrate that
using almost 90% of the training data to learn the prior can result in a high test performance while
still offering guarantees on the expected error. For example, they obtain an average accuracy of 98%
on CIFAR-10 (Krizhevsky et al., 2009) with ResNets20 (He et al., 2016) with an error bound of 23%
that holds with 95% probability.

Pérez-Ortiz et al. (2021) combine the data-dependent priors approach from Dziugaite et al. (2020)
with the PAC-Bayes with Backprop (PBB) approach from Rivasplata et al. (2019) to obtain state-
of-the-art PAC-Bayes non-vacuous bounds for MNIST and CIFAR-10. PAC-Bayes with Backprop
(PBB) is a self-certified learning approach that consists of deriving new training objectives that
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minimize PAC-Bayes bounds directly. Therefore, training probabilistic neural networks by PBB
methods guarantees both high quality predictions and tight PAC-Bayes bounds. Rivasplata et al.
(2019) were able to achieve an error bound as low as 2.3% on binary class variant of the MNIST
dataset, where digits 0− 4 were mapped to class 0 and digits 5− 9 were mapped to class 1.

Table 1 summarizes the PAC-Bayes non-vacuous bounds that we covered in this section for bench-
mark datasets in deep learning.

Table 1: Recent non-vacuous bounds obtained on popular image classification datasets in deep learn-
ing. Note that the non-vacuous bounds reported by Dziugaite and Roy (2017) and Rivasplata et al.
(2019) were obtained on binary class variant of MNIST.

Non-vacuous bounds (%)
Paper MNIST FMNIST CIFAR-10 ImageNet

Dziugaite and Roy (2017) 16.1 ✗ ✗ ✗
Rivasplata et al. (2019) 2.3 ✗ ✗ ✗

Zhou et al. (2019) < 46 ✗ ✗ < 96.5
Dziugaite et al. (2020) 11 18 23 ✗

Pérez-Ortiz et al. (2021) 1.5 ✗ 18 ✗

4 Recent Developments

We survey some recent developments of PAC-Bayes as applied to various domains.

4.1 Graph Neural Networks

Liao et al. (2021) generalizes the Neyshabur et al. (2017a) bounds to work with graph neural net-
works. For the case of graph convolutional networks, the bound is similar to the result of Neyshabur
et al. (2017a) with the exception of an additional term capturing the maximum node degree (d).
Intuitively, this additional terms follows from the fact that feed-forward convolutional networks can
be viewed as a graph neural net with zero edges, and thus have no node degrees.

For completeness we include the bound below, with probability 1− δ and any γ > 0,

E[R(f)] ≤ E[R̂(f)] +O


√√√√B2dl−1l2h log(lh)

∏l
i=1 ||Wi||22

∑l
i=1(

||Wi||2F
||Wi||22

+ log nl
δ )

γ2n

 , (4)

where Wi is the weight matrix of the j-th layer, B > 0 is a constant bounding the magnitude of
features, l > 1 is the number of layers, h is the maximum hidden dimension across all layers, and
d− 1 is the maximum node degree.

4.2 Binary Neural Networks

Letarte et al. (2019) uses PAC-Bayes bound to give a theoretically-driven way of training binary-
activated neural networks, which are less computational and memory heavy as compared to the
currently mostly popular real-value activated neural networks.

Interesting, they are able to derive a bound to directly optimize binary neural networks with non-
vacuous guarantees, despite the fact that binary neural nets are non-differentiable. The bound is
based on the results of Catoni (2007). Their modified bound is,

E[R(f)] ≤ inf
C>0

{
1

1− e−C

(
1− exp

(
EQ[R̂(f)]− 1

n
[KL(Q,P ) + ln

2
√
n

δ
]

))}
, (5)

with constant C.

4.3 Probabilistic Neural Networks

Pérez-Ortiz et al. (2021) is interested in training probabilistic neural networks directly with PAC-
bayes bounds as to achieve solutions with guarantees, introducing a family of “PAC-Bayes with
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Backprop” methods, which connects to the “Bayes-by-Backprop” method of Blundell et al. (2015)
which optimizes probabilistic neural networks through a KL bound (but without generalization guar-
antees).

They start with the classic results of Dziugaite and Roy (2017), which follows from a relaxation of
the 0-1 loss with the bounded cross-entropy loss,

fclassic(Q) = L̂x−e
S (Q) +

√
KL(Q,P ) + log( 2

√
n

δ )

2n
, (6)

where L̂x−e
S (Q) = 1

n

∑n
i=1 R̂(f(Xi), Yi) is a bounded empirical cross entropy loss, with neural

network function f . The authors go on to introduce two new objectives which achieves tighter
bounds,

fquad(Q) =


√

L̂x−e
S (Q) +

KL(Q,P ) + log( 2
√
n

δ )

2n
+

√
KL(Q,P ) + log( 2

√
n

δ )

2n

2

, (7)

flambda(Q,λ) =
L̂x−e
S (Q)

1− λ
2

+
KL(Q,P ) + log( 2

√
n

δ )

nλ(1− λ
2 )

. (8)

Generally, neural networks trained with this method is “self-certified” in that they can be trained on
the full training dataset, while giving a bound for generalization errors on unseen data from the same
distribution.

4.4 Reinforcement Learning

We now turn to a brief survey the application of PAC-Bayes analysis in the reinforcement learning
(RL) setting. While PAC analysis is not uncommon in RL (Strehl et al., 2009), PAC-bayes analysis is
more sparsely found. Notably, Milani Fard and Pineau (2010) provides the first PAC-bayes analysis
for the RL setting, for the case of discrete, finite state and action spaces.

Concretely, given a finite set of states S and actions A, the object of interest for this set of analysis
is the value function Qπ∗

: S × A → R. This is the value function (denoted by Q) of the best
policy (denoted π∗), meaning it has the highest value (sum of future rewards) for all states s ∈ S .
If one can learn Qπ∗

, then one can act optimally (i.e. in a way that maximizes total reward) by
simply taking the greedy action: argmaxa Q

π∗
(s, a),∀s ∈ S . However, the challenge of RL arises

from the fact that one cannot learn Qπ by minimizing empirical risk from i.i.d. sampled data (as
is the case for supervised learning). We do not focus on methods for solving Qπ∗

here (for a good
reference see Sutton and Barto (2018)), but we can still reason about PAC-bayes bounds in the RL
setting by either lower-bounding the true optimal value function Qπ∗

, or upper bounding the error
of an approximate value function to Qπ∗

.

Model based, discrete finite states One way to solve for Qπ∗
is via “model-based” RL. Here, a

transition model of the environment is learned, then Qπ∗
can be solved through dynamic program-

ming. To avoid abuse of notation, consider the prior ρ0 and posterior ρ, here defined over the space
of transition models. Milani Fard and Pineau (2010); Milani Fard (2014) lower-bounds Qπ∗

, as a
function of the error in learning such a transition model T , for discrete state and action spaces,

ET∼ρ[Q
π∗
T (s, a)] ≥ ET∼ρ[Q̂

π∗
T (s, a)]−

√
KL(ρ||ρ0)− ln δ + |S| ln 2 + ln |S|+ lnnmin

1
2 (nmin − 1)k2

, (9)

with |S| denoting the size of the (finite) state space, and constants nmin = mins,a ns,a denoting the
number of samples collected for each state-action pairs (note this space has size |S| × |A|), and
k ≥ (1 − γ)2/γ and γ ∈ [0, 1) being RL-specific constants that bounds the value function error as
a function of the transition model error.
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Model free, discrete finite states Another method for obtaining Qπ∗
is to solve for it directly by

minimizing ||Q−Qπ∗ ||∞ for all states and actions. While this cannot be done directly (as one does
not have samples from Qπ∗

), this can be done by minimizing a surrogate “temporal difference” error
lTD.† In the parlance of supervised learning, one can treat ||Q−Qπ∗ ||∞ as the true risk, and lTD as
a (surrogate) empirical risk. Similarly, one can derive a PAC-bayes bound by defining the posterior
distribution ρ over value functions Q,

EQ∼ρ[||Q−Qπ∗
||∞] ≤ EQ∼ρ[lTD]

1− γ
+

√
KL(ρ, ρ0)− ln δ + ln |S|+ ln |A|+ ln(2nmin)

2(nmin − 1)C
. (10)

Notably, the above bounds are not quite “generalization” bounds in the supervised learning setting.
Instead, they bound the quality of behaviour of the agent (in terms of the value function Qπ∗

which
estimate how much total reward the agent will get) as a function of the number of interactions from
the environment. Milani Fard and Pineau (2010) also optimizes the above bounds directly to take
into account better prior information to find a good policy.

Model free, continuous states One can extend the above analysis to the space of continuous
states—therefore continuous value functions, as was done in Milani Fard et al. (2012). However,
Milani Fard et al. (2012) only shows this in the case of policy evaluation—finding Q for some given
policy π—rather than the previous result of finding Q for thebest policy π∗. This bound is,

EQ∼ρ[||Q−Qπ||] ≤ 1

(1− γ)2

(
EQ∼ρ[J

π
TD(Q)] +

√
KL(ρ, ρ0) + ln n

δ

(n− 1)/C
− EQ∼ρ[Λ

π
TD(Q)]

)
,

(11)
where Jπ

TD(Q) is the empirical temporal difference loss under policy π (akin to ”empirical risk”),
and C = 2τV 4

max are constants, and Λπ
TD(V ) is a term relating to the variance of each state.

This is useful for when we have informative prior about the value of a policy and wish to quickly
re-evaluate its value in a new environment. All in all, much is left to be developed in applying PAC-
Bayes analysis to the RL setting, although the lack of work here likely results from the difficulty in
bounding the non i.i.d. RL objective.

5 Computational aspects of PAC-Bayes

Advancements in modern machine learning has lead to developments in provably efficient learning
algorithms. While broader questions of whether deep neural networks are provably efficient remain
unanswered, the study of shallow networks with common activation functions has shown reasonable
success, when permitting for various assumptions of the weight structure of the network and distri-
bution of the training data. While this framework limits each study to a limited set of learners and
various constraints, recent success has resulted in the development of a handful of provably efficient
learning algorithms in a variety of cases. In this section, we highlight a few examples of recent
PAC-learnable algorithms, particularly those applicable to neural networks.

PAC Learning In proving efficient PAC learning algorithms, we typically define a target func-
tion f ∈ F and a data distribution D ∈ Rd noisy data generator (called a noisy example oracle,
EXnoise(f,F) that returns data pairs (x, y) such that x ∼ D and y = f(x) + ξ, where ξ is a zero-
mean subgaussian noise variable with standard deviation σ. For a given number of samples, and
confidence δ, the goal of the learner is to produce a hypothesis f̂ that is ϵ-close to f so that:

P
[
Ex∼D

[
ℓ(f(x), f̂(x))2

]
≤ ϵ2

(
Ex∼D

[
f2(x)

]
+ σ2

)]
≥ 1− δ (12)

This might look familiar, as a non-Bayesian form of 1. While much research has shown success
in recognizing efficient learning algorithms for shallow/simple neural networks, fewer have specifi-
cally proven PAC learnability. Learnable algorithms have focused on parameter estimation, the task
of recovering coefficients and the corresponding weight matrix of the data generation distribution,

†See appendix for a more precise definition of lTD
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which contrasts with PAC learning, which assumes no structure of the weight process, as the learned
solution can be ϵ-close while having an entirely different weight structure.

5.1 Polynomial-time Learning for One-Hidden-Layer ReLU Networks

Diakonikolas et al. (2020) recently derived a PAC learning algorithm that’s solvable in polynomial
time, the first algorithm for the particular class of algorithms explored in the paper.

One-hidden-layer ReLU networks To ensure a class of networks without strong restrictions on
the weights, this study focused on a relatively simple architecture of an input, hidden layer with
k units, and output, using ReLU activations, denoted as Ck. A particular instance of this class
fα,W ∈ Ck with a vector of coefficients α and weight matrix W would then be defined as:

fα,W =

k∑
i

αiϕ(⟨w(i),x⟩) (13)

where ϕ(t) = max{0, t} (a ReLU activation). Furthermore, they constrain this study to the subset
of Ck such that all coefficients αi > 0, the positive coefficient class of single-hidden layer ReLU
networks C+

k ⊂ Ck.

Techniques The crux of the approach by Diakonikolas et al. (2020) is reducing the problem from
being d-dimensional to being k-dimensional by the following steps. Knowing our target function f
will take the form f =

∑k
i αiϕ(⟨w(i),x⟩), we know that there exists a subspace V spanned by the

vectors of the weight matrix w(i). If we learn this subspace, we can solve our target function in k
dimensions, as it can be written as f(x) = f(projV(x)).

To build our approximation of this unknown subspace, V ′, the authors note that we can use the Chow-
2 parameters‡ of the target function, f(x)(xxT − I), showing that the moments of f are positive in
directions along V and 0 in orthogonal directions. This notion can be approximated by noting that
weight vectors w(i) with large corresponding coefficients αi will have large second moments, and
those with small αi will likely be orthogonal to V . By building V ′ using this approximation of the
second moment matrix by learning W, it can be shown that f(x) is provably close to f̂(projV′(x)).

Statistical Query Lower Bound To formally define a lower bound for PAC learning the single-
hidden-layer ReLU class, the authors define a correlational Statistical Query (SQ) model under the
assumption of Gaussian-distributed data. This model has access to an oracle that can take a query
function q : Rd → [−1, 1] and accuracy parameter τ > 0 and learns an estimate of Ex∼D[f(x)g(x)]
within some accuracy. This general result fits for the algorithm chosen, and also guarantees that error
of order ϵ = Ω(1) in polynomial time, dependent on the number of hidden units k. This bound is
established for the specific form shown in 13, and provides the result for a solution in polynomial
time when k ≤ Õ(

√
log d).

5.2 Further Examples of PAC Learning Algorithms for Neural Nets

PAC Learning of Single-Layer Neural Nets Vempala and Wilmes (2018) identify a PAC learning
algorithm for the class of single-layer neural networks with any nonlinearity ϕ and a single output for
inputs drawn from the uniform distribution on the sphere Sn−1 ⊂ Rn. By loosening the restrictions
on the nonlinearity, they show, by a similar SQ framework to show complexity in exponential time,
even when constraining to a single ReLU network, as done in Diakonikolas et al. (2020).

PAC Learning for 2-Layer Networks Goel and Klivans (2018) extends the work done by Vem-
pala and Wilmes (2018) by developing a learning algorithm Alphatron that is provably efficient for
two-layer neural networks in polynomial time. It similarly examines data drawn from the unit ball,
but of any distribution over the ball. This is the provably PAC learning algorithm that is able to
handle a multi-layer model, highlighting the difficulty of extending provably efficient algorithms for
NNs of any meaningful depth.

‡Degree-2 Fourier Coefficients
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A Appendix: Reinforcement Learning

We follow the notation of Milani Fard and Pineau (2010) and define the empirical Bellman optimal-
ity operator, B̂. The operator acts to transform the the current value function Q(s, a) in the following
way,

B̂Q(s, a) =
1

ns,a

∑
(s,a,r,s′)∈U

(
r + γmax

a′
Q(s′, a′)

)
, (14)

where (s, a, r, s′) is a single “experience sample” from some sampling distribution U (e.g. by acting
in the environment, or past experiences from the environment) containing current state, current
action, immediate reward, and next-step state, respectively. In practice, B̂Q(s, a) can be used as a
learning target for the current value function Q(s, a). Learning is done by minimizing some distance
between the two functions, e.g. here defined as a norm over all state-action pairs,

lTD = ||Q− B̂Q||∞ . (15)
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