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How do we perform model selection? 

How do we select between scientific hypotheses or trained models that are 
entirely consistent with observations? 
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The marginal likelihood or the evidence 
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Occam’s razor 
    We should accept the simplest explanation that fits the data

4Figures from Information Theory, Inference, and Learning Algorithms, page 343, David J. C. MacKay



The marginal likelihood encodes Occam’s razor 

The most constrained model which can fit the data wins, encapsulating "Occam's razor". 

5Figures from Information Theory, Inference, and Learning Algorithms, page 344, David J. C. MacKay



Contributions
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• Distinguish between selecting over prior scientific hypotheses, for which the marginal 

likelihood is reasonable, and predicting the generalization of models after training.
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Contributions
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• Distinguish between selecting over prior scientific hypotheses, for which the marginal 

likelihood is reasonable, and predicting the generalization of models after training.

• Describe conceptual and practical issues in using the marginal likelihood for selecting 

between trained models and hyperparameter learning, including a variety of 

mechanisms for over- and under-fitting, and approximate inference.

• Demonstrate that the marginal likelihood can be negatively correlated with the 

generalization of trained neural network architectures. 

• Demonstrate that a conditional marginal likelihood is more aligned with generalization 

and more practical for large-scale hyperparameter learning. 



Background
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Bayesian learning 
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Posterior Likelihood Prior 



Bayesian learning

12

Posterior Likelihood Prior 



The pitfalls of the marginal likelihood
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The marginal likelihood penalizes diffuse priors 
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The marginal likelihood penalizes diffuse priors 
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● Prior A → Posterior B

● Prior C → Posterior D

● Prior A > Prior C

● Posterior D > Posterior B



The marginal likelihood is NOT generalization 
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Is this generalization?

“What is the probability 
that a prior generated 
the data?”

The marginal likelihood 

The generalization question: 

“How likely is the posterior, 
conditioned on the training 
data, to have generated 
withheld points drawn from the 
same distribution?”



The marginal likelihood can overfit - GPs
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The marginal likelihood can also underfit 
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The LML will not support optimal solutions if it requires 

supporting other solutions that do not provide a good fit 

to the data, leading to underfitting.



The marginal likelihood can also underfit 

The LML will not support optimal solutions if it requires 

supporting other solutions that do not provide a good fit 

to the data, leading to underfitting.
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An example of the LML favoring an 

overly simple model: 



Decomposition of the marginal likelihood
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Decomposition of the marginal likelihood
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Decomposition of the marginal likelihood

22

The LML is the area 
under the curve



The conditional marginal likelihood
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● What if we formed a posterior over a subset of the data and 
used it as a prior to compute LML for the rest of the data?

● This is equivalent to ignoring the first m terms in the LML 
decomposition.

● We define the conditional log marginal likelihood (CLML):



The conditional marginal likelihood
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● What if we formed a posterior over a subset of the data and 
used it as a prior to compute LML for the rest of the data?

● This is equivalent to ignoring the first m terms in the LML 
decomposition.

● We define the conditional log marginal likelihood (CLML):

● The CLML has been considered for reducing prior sensitivity, but not to address 
underfitting, hyperparameter learning, neural architecture search, or model 
comparison with approximate inference.



The conditional marginal likelihood: 
experimental results! 
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The CLML is more aligned with generalization
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The CLML for neural architecture search, CIFAR-100

• The LML is not always aligned with generalization. 

• CLML is aligned with generalization for all prior precisions! 
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The CLML for deep kernel learning (DKL), regression

• CLML optimization outperforms LML optimization in low data regimes.
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The CLML for deep kernel learning (DKL), classification

• CLML optimization outperforms LML optimization for different kernels and 

transfer learning tasks.
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Concluding remarks
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Conclusion
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Is this generalization?

“What is the probability 
that a prior generated 
the data?”

The marginal likelihood 

• The marginal likelihood story is more nuanced: “how likely is my prior to have 

generated the data?” ≠ “how likely is my posterior to make good predictions?”



Conclusion

• The marginal likelihood is reasonable for comparing fixed prior scientific hypotheses, 

but answers the wrong question for predicting the generalization of trained models.

• The marginal likelihood can overfit and underfit.

• The CLML provides an alternative to the LML that addresses underfitting.
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Paper Code

Find us during the poster session: poster 828, hall E, between 6 and 8 pm!


