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How do we perform model selection?

How do we select between scientific hypotheses or trained models that are
entirely consistent with observations?

Model 1 Model 2 Model 3 Model 4



The marginal likelihood or the evidence

The probability (density) that we would generate a dataset D with a model M if
we randomly sample from a prior over its parameters,

p(D |M) = f p(DIw, M) p(w|M) dw

We usually use the log-marginal likelihood (LML) log p(D |M).



Occam’s

We should accept the simplest explanation that fits the data
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Figures from Information Theory, Inference, and Learning Algorithms, page 343, David J. C. MacKay




The marginal likelihood encodes Occam’s razor

The most constrained model which can fit the data wins, encapsulating "Occam's razor".

Evidence
P(DiHl)
P(D!Hz)
Lo VI = D
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Figures from Information Theory, Inference, and Learning Algorithms, page 344, David J. C. MacKay
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Contributions

e Distinguish between selecting over prior scientific hypotheses, for which the marginal
likelihood is reasonable, and predicting the generalization of models after training.

e Describe conceptual and practical issues in using the marginal likelihood for selecting
between trained models and hyperparameter learning, including a variety of
mechanisms for over- and under-fitting, and approximate inference.

e Demonstrate that the marginal likelihood can be negatively correlated with the
generalization of trained neural network architectures.

e Demonstrate that a conditional marginal likelihood is more alighed with generalization
and more practical for large-scale hyperparameter learning.



Background




Bayesian learning

Posterior weighted Bayesian model average (BMA):

Paua(ylx, D) = f p(ylx,w) p(wID) dw

Posterior Likelihood Prior

N

p(w|D) < p(D|w) x p(w)

Prior Hypothesis Space

Posterior /
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Bayesian learning

Posterior weighted Bayesian model average (BMA):

Pama(ylx, D) = f p(ylx,w) p(wID) dw

Standard training:

Wyap = argmax,,log p(w|D)
= argmax, [log p(D|w) + logp(w)]

Posterior Likelihood Prior

N

p(w|D) < p(D|w) x p(w)

Prior Hypothesis Space

Posterior /
\ /‘
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The pitfalls of the marginal likelihood




The marginal likelihood penalizes diffuse priors

Density estimation example:
x~N(u, 1), u~N (u,52)

Prior A Prior C ——= Mym: LML=—60.8
M1 731, LML=—66.9
B M, %%, LML=—66.3

---- Empirical mean

N | T

Posterior B
Posterlorx

p(w|D) x p(DIw) x p(w) X
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The marginal likelihood penalizes diffuse priors

Density estimation example:
x~N(u, 1), u~N(u,c?)

Prior A Prior C e Prior A— Posterior B
e Prior C — Posterior D

e Prior A>PriorC

Posterior B e Posterior D > Posterior B

Postenork

p(w|D) x p(D|lw) x p(w)
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The marginal likelihood is NOT generalization

The generalization question:

“How likely is the posterior,
conditioned on the training
data, to have generated
withheld points drawn from the
same distribution?”
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Is this generalization?

“What is the probability
that a prior generated
the data?”
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The marginal likelihood can overfit - GPs

1
FXO~N(m(X), k(X,X)); k(x,x") = exp (—ﬁ |1 — x'I|2>

Given enough flexibility with the prior mean of a Gaussian process, the marginal likelihood
overfits the data, providing poor overconfident predictions outside of the train region.

17



The marginal likelihood can also underfit

The LML will not support optimal solutions if it requires
supporting other solutions that do not provide a good fit
to the data, leading to underfitting.
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The marginal likelihood can also underfit

The LML will not support optimal solutions if it requires
supporting other solutions that do not provide a good fit

An example of the LML favoring an
to the data, leading to underfitting.

overly simple model:

M3 LML: 53.8
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Decomposition of the marginal likelihood

The log marginal likelihood (LML) can be decomposed as follows:

n
logp(D [M) = ) logp(DilDi, M),
i=1

logp(D;|D.;, M): the predictive log-likelihood of the data point D; under the
Bayesian model average after observing the data D_; containing all samples before i.
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Decomposition of the marginal likelihood

* We can decompose the LML: logp(D |[M) = ¥, logp(D;|D<i, M).
* Back to the density estimation example: x~N (u, 1), u~N (u, %)

—— - MMML: LML=—608 _1
My 7531, LML=—66.9
EE M, ;;25_0091, LML=—-66.3 ’5 —2
----- Empirical mean & — - A
QQ MML
B 0.4 &5 3 M,
X ——
502 M,
0.0 =

% Number of datapoints, n
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Decomposition of the marginal likelihood

* We can decompose the LML: logp(D |[M) = ¥, logp(D;|D<i, M).

* Back to the density estimation example: x~N (u, 1), u~N (u, 6%)
M is penalized
=== Mpumr: LML=-60.8 = by the early terms
My 759, LML=—66.9

B M, =5, LML=—66.3 ¥
..... Empirical mean &:
= The LML is the area
K - M, under the curve
=02

0 20 40
% Number of datapoints, n
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The conditional marginal likelihood

e What if we formed a posterior over a subset of the data and
used it as a prior to compute LML for the rest of the data?

e Thisisequivalent toignoring the first mterms in the LML 5 -2 /
decomposition. Qz - MupmL
Q
- - My
e We define the conditional log marginal likelihood (CLML): —
n —4
108 p(Dam| Dy, M) = ) 10gp(DilDi, M) o w

‘ Number of datapoints, n
i=m
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The conditional marginal likelihood

e What if we formed a posterior over a subset of the data and
used it as a prior to compute LML for the rest of the data?

e Thisisequivalent toignoring the first mterms in the LML v -2 /
decomposition. Qz - MupmL
Q
- - My
e We define the conditional log marginal likelihood (CLML): —
n —4
108 p(Dam| Dy, M) = ) 10gp(DilDi, M) o w

‘ Number of datapoints, n
i=m

e The CLML has been considered for reducing prior sensitivity, but not to address
underfitting, hyperparameter learning, neural architecture search, or model
comparison with approximate inference.
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The conditional marginal likelihood:
experimental results!




The CLML is more alighed with generalization

* Rational quadratic (RQ) kernel: Noise var 0 = 0.2
kng e ) = a? (14|l —#I[/@a ) | e 7
e Test LL
* The LML is misaligned with the shape of the test - L ML
log-likelihood for large noise observation values. 0.4 —_— CLML
* The CLML is more robust to model 3(2)

misspecification.
0.0 0.1 0.2 0.3

RQ kernel, o
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The CLML for neural architecture search, CIFAR-100

e The LMLis not always aligned with generalization.
e CLMLisaligned with generalization for all prior precisions!

A=102 A=10"1 A=1073
° OO ¢ OCCy
5; < -20 —100
3 ©
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=525 50 759035 w50 75 25 50 75 25 50 75 25 50 75

BMA test accuracy [%]

BMA test accuracy [%]

O CNN
A ResNet

103 10> 107
# Parameters
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The CLML for deep kernel Learning (DKL), regression

e CLML optimization outperforms LML optimization in low data regimes.

Boston Wine, White Concrete

g 0.4% é 1.5 é éi -
~ g é & é =
0.2 i i ?5* 1.0 %i % 0.4 QJETQ? CLML

100 200 300 400 455 100 300 500 700 100 300 700
Number of Training Examples



The CLML for deep kernel Learning (DKL), classification

e CLML optimization outperforms LML optimization for different kernels and
transfer learning tasks.
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(b) Transfer to Omniglot (c) Transfer to QMUL
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Concluding remarks




Conclusion

e The marginal likelihood story is more nuanced: “how likely is my prior to have
generated the data?” # “how likely is my posterior to make good predictions?”

“What is the probability
that a prior generated
the data?”

Is this generalization?
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Conclusion e

e Themarginal likelihood is reasonable for comparing fixed prior scientific hypotheses,
but answers the wrong question for predicting the generalization of trained models.

e The marginal likelihood can overfit and underfit.

e The CLML provides an alternative to the LML that addresses underfitting.

Find us during the poster session: poster 828, hall E, between 6 and 8 pm!
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